

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December / January 2024 Supplementary Examinations

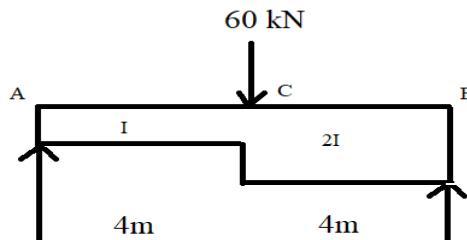
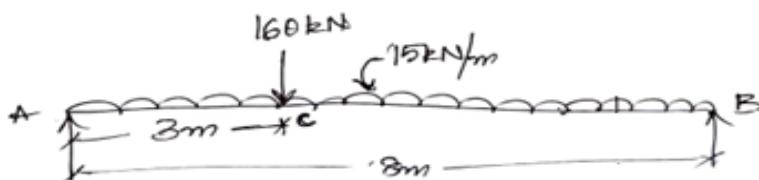
Programme: B.E.

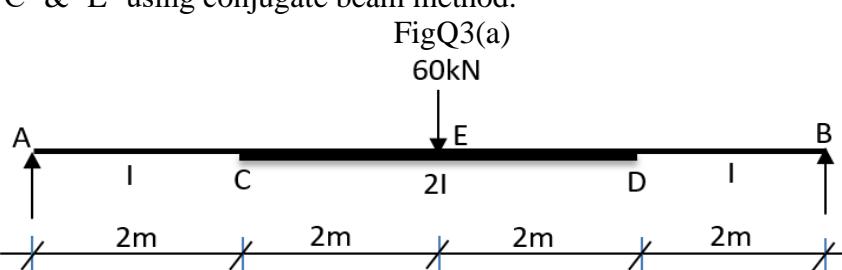
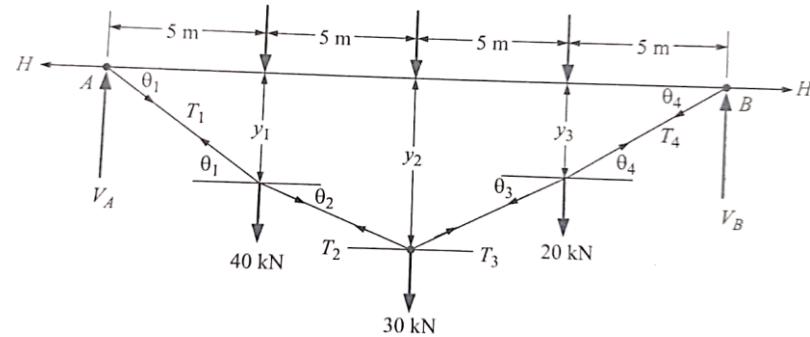
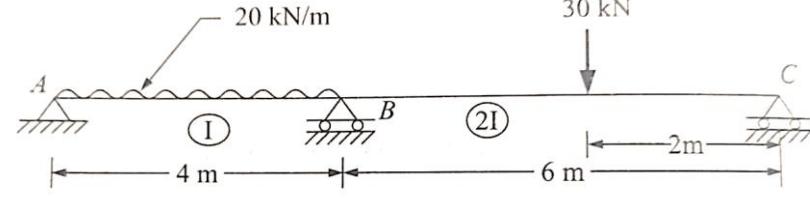
Branch: Civil Engineering

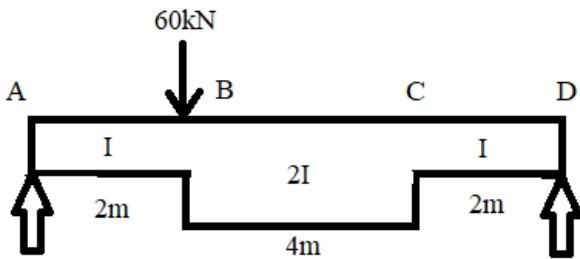
Course Code: 22CV4PCSTA

Course: STRUCTURAL ANALYSIS

Semester: IV



Duration: 3 hrs.




Max Marks: 100


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain determinate and indeterminate structures with examples.	CO1	PO1	06
	b)	Determine the slope of the beam at C using Macaulay's method for the beam shown in the figure below. Take $EI = 40 \times 10^3 \text{ kNm}^2$.	CO1	PO1,2	14
UNIT - II					
2	a)	Find the rotation and deflection at the free end of a cantilever beam carrying an udl of $w \text{ kN/m}$ for the first half of span from its support using moment area method. Take EI constant throughout the span L	CO 1	PO1,2	08
	b)	Determine the slope at A, B, C and deflection at C for the beam shown in the figure using conjugate beam method.	CO 1	PO2	12
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

3	a)	<p>State and explain the two Moment Area theorems with sketches.</p>	CO 1	PO1	06
	b)	<p>For the beam shown in FigQ3(a) find the deflection at the points 'C' & 'E' using conjugate beam method.</p> <p>FigQ3(a)</p>	CO 1	PO1,2	14
		UNIT III			
4	a)	<p>A light cable is suspended at 2 points 20m apart which are at same level. The cable supports point loads 40kN, 30kN and 20kN spaced at 5m c/c respectively. The dip at first point is found to be 0.8m. Determine the tension in different segments and also the total length of the cable shown in the figure below.</p>	CO1	PO1,2	12
	b)	<p>Show that the bending moment is zero at all the points for a three hinged symmetrical parabolic arch of span "L" with central rise h subjected to udl w/ unit length throughout the span.</p>	CO1	PO1	08
		UNIT - IV			
5	a)	<p>Analyze the propped cantilever beam with w kN/m udl throughout the span L by the method of Consistent Deformation. Assume (EI) is constant. Sketch BMD and SFD</p>	CO 1	PO1,2	08
	b)	<p>Analyze the two-span continuous beam shown in the figure using three moment equation. Also draw the BMD and SFD. Support B sinks by 2mm and support C sinks by 3mm $EI=2.5 \times 10^4$ kNm2</p>	CO 1	PO2	12

UNIT - V					
6	a)	Derive the equation for strain energy stored due to bending.	CO 2	PO1	08
	b)	Find the deflection under concentrated load using strain energy method for the beam shown below. Assume $E = 200 \text{ kN/mm}^2$ and $I = 1 \times 10^8 \text{ mm}^4$.	CO 2	PO1,2	12
OR					
7	a)	A steel beam of uniform cross section is simply supported on a span of 10m and carries point loads of 50kN, 100kN, 150kN at a distance 2m, 5m, and 6m respectively from the left support. Compute the deflection under 150kN load using unit load method. Take $EI = 4 \times 10^4 \text{ kNm}^2$	CO 2	PO1,2	12
	b)	Using unit load method compute the deflection at mid span of a simply supported beam carrying a udl $w \text{ kN/m}$ throughout the span L . Assume uniform EI .	CO 2	PO1,2	08
