

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22CV4PCSTA

Max Marks: 100

Course: STRUCTURAL ANALYSIS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain statically determinate and statically indeterminate structures with examples	CO1	PO1	06
	b)	A simply supported beam of span 10 m carries a point load of 20 KN at 4m from left support and a point load of 40 KN at 3m from right support. Find the deflection under the 40 KN load using Macaulay's method. Assume EI is constant.	CO1	PO1	10
	c)	Determine the static and kinematic indeterminacies of structures shown in fig.1 below.	CO1	PO1	04
Fig-1					
UNIT - II					
2	a)	Find the maximum deflection and maximum slope for the beam shown in fig 2 below using the moment area method. Take $E=200 \text{ GPa}$, $I=1.2 \times 10^8 \text{ mm}^4$	CO1	PO1	10
	b)	State moment area theorems.	CO1	PO1	02
	c)	Determine the deflection under the 80kN load for the beam shown in fig 3 using conjugate beam method.	CO1	PO1,2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

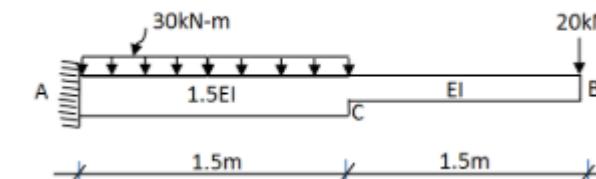


Fig-2

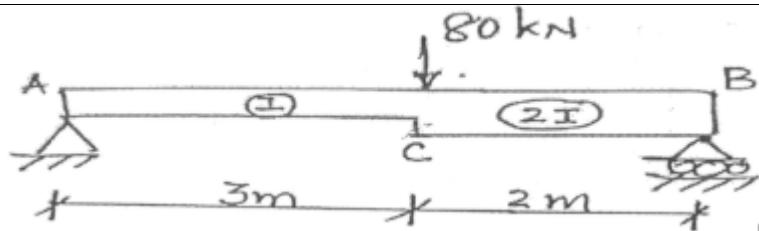


Fig-3

OR

- 3 a) Find the slope and deflection at point 'C' for the beam shown in fig 4 below using conjugate beam method. Take $E=200\text{GPa}$, $I=1.2\times10^8 \text{ mm}^4$

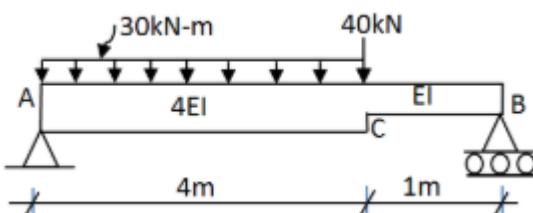


Fig-4

- b) Analyze the beam shown in fig 5., below for slope and deflection at the point C Take $EI= 2.5 \times 10^4 \text{ kN}\cdot\text{m}^2$. Use moment area method.

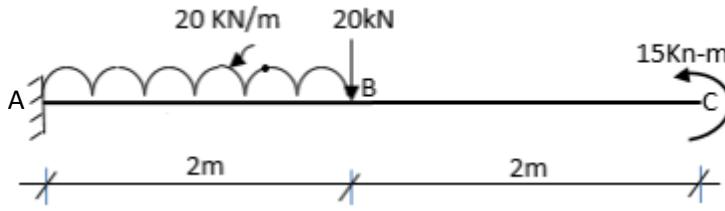


Fig-5

UNIT - III

- 4 a) A three hinged parabolic arch of span 40 m with a central rise of 10 m, carries an udl of 30 kN/m over the left half of the arch and a point load of 40 kN at right quarter span point. Find the reactions, normal thrust, radial shear and bending moment at left quarter span point.

- b) A cable is supported from two points A and B which are 80m apart. B is 6m below A, the lowest point on the cable is 10m below B. The cable supports a udl of intensity 24kN/m over the entire span. Calculate maximum tension in the cable. If the cable passes over a roller on the top of pier at the end A and anchored, Find the forces transmitted to the pier. Assume anchor cable is inclined at 32° with respect to the horizontal.

UNIT - IV

- 5 a) Analyze the propped cantilever shown in fig.6, below by consistent deformation method.

CO2 PO2 10

CO2 PO1,2 10

12

CO2 PO1,2 08

06

Fig-6

- b) Using the theorem of three moments analyze the continuous beam shown in fig.7, below. Support B sinks by 10 mm. Take $E=200 \text{ kN/mm}^2$, $I=1.8 \times 10^8 \text{ mm}^4$. Draw BMD, SFD showing all salient values.

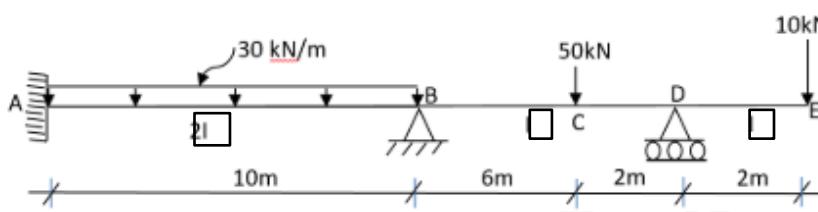


Fig-7

UNIT - V

- 6 a) Determine the horizontal and vertical displacement at point C of the rigid frame shown in fig 8 using Castigliano's theorem. Take $EI=10 \times 10^3 \text{ KN-m}^2$

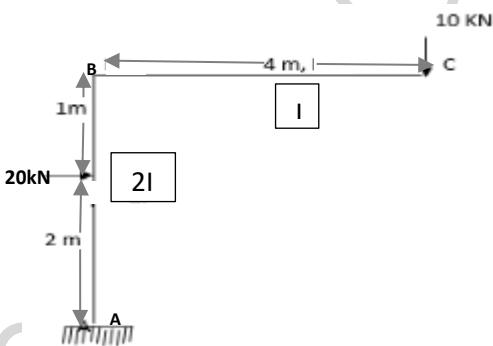


Fig-8

- b) State and explain Castigliano's first theorem.

OR

- 7 a) Derive the expression for strain energy due to bending.

- b) A non-prismatic simply supported beam ACB is loaded as shown in fig 9 below. Determine deflection below the load by using strain energy method. Take $I = 5000 \text{ cm}^4$, $E = 2 \times 10^5 \text{ N/mm}^2$.

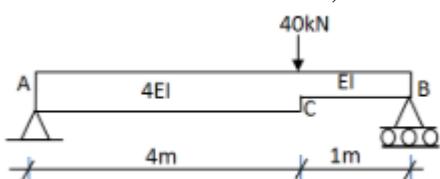


Fig-9
