

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

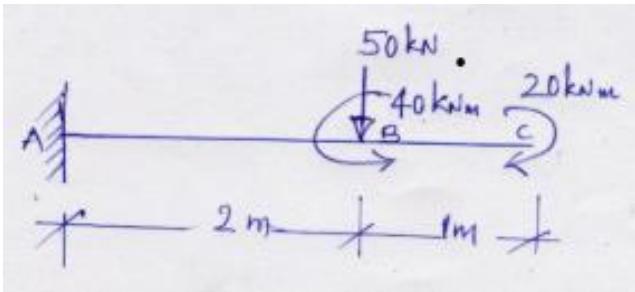
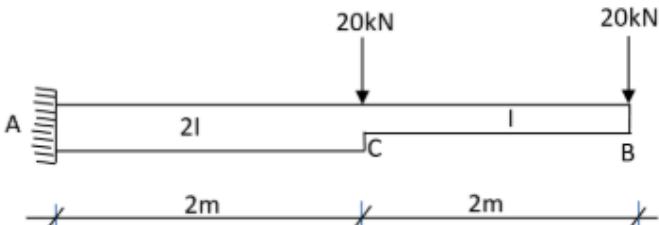
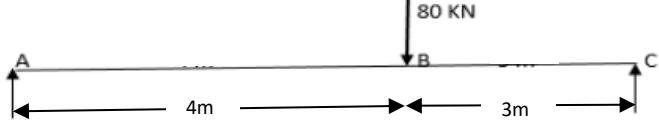
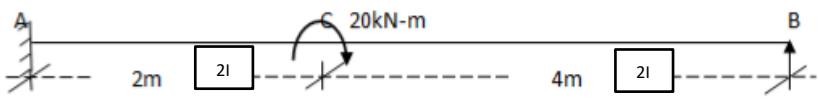
Programme: B.E.

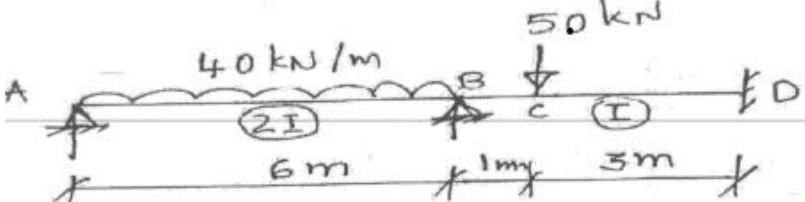
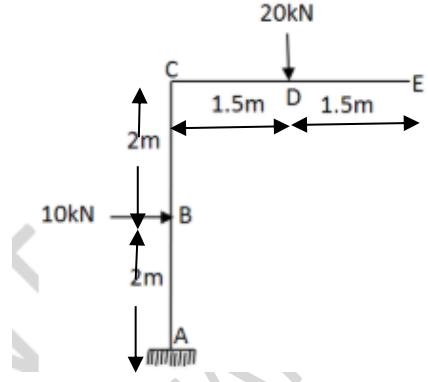
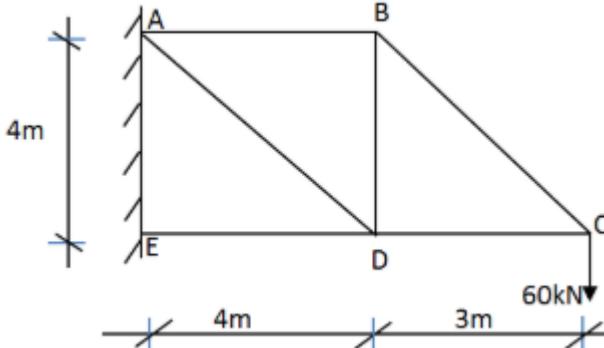
Branch: Civil Engineering

Course Code: 22CV4PCSTA

Course: STRUCTURAL ANALYSIS

Semester: IV





Duration: 3 hrs.




Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine the static and kinematic indeterminacies of structure shown in Fig 1(a&b)</p>	CO1	PO 1,2	06
	b)	<p>Determine the maximum slope and deflection under the 40kN load for the beam shown in fig 2 Macaulay's method. Assume EI is constant.</p>	CO1	PO1,2	14
UNIT - II					
2	a)	<p>Analyze the beam shown in fig 3 for deflection under the load. Use conjugate beam method.</p>	CO1	PO1,2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>For the beam shown in Fig4 find the slope and deflection at the free end C by moment-area method. Assume EI constant.</p> <p>Fig-4</p>	CO1	PO1,2	10
		OR			
3	a)	<p>Find the maximum deflection and maximum slope for the beam shown in Fig 5 using conjugate beam method. Take $E=200$ GPa, $I=1.2 \times 10^8 \text{ mm}^4$</p> <p>Fig-5</p>	CO1	PO1,2	10
	b)	<p>Calculate maximum deflection and slope at A for the beam shown in Fig-6 using Moment area method. Assume EI is constant.</p> <p>Fig-6</p>	CO1	PO1,2	10
		UNIT - III			
4	a)	<p>A three hinged parabolic arch of span 36m and central rise 6m is subjected to an udl of intensity 40kN/m acting symmetrically on the arch, over a length of 20m. Determine the normal thrust, radial shear and bending moment at a section 6m from left support.</p>	CO1	PO1,2	10
	b)	<p>A cable is supported from two points A and B 80m apart. A is 6m below B and the lowest point of the cable is 12m below point A. The cable supports an udl of intensity 24kN/m over the entire span. Determine the size of the cable if the stress in cable is not to exceed 300 N/mm^2.</p>	CO1	PO1,2	10
		UNIT - IV			
5	a)	<p>Analyze the given structure as shown in fig 7 by consistent deformation method.</p> <p>Fig-7</p>	CO2	PO1,2	10

	b)	Analyze the continuous beam shown in fig 8 using Clapeyron's theorem of three moments. Support at A sinks by 2mm and Support at B sinks by 3mm. Take $E=200\text{GPa}$, $I=2*10^8 \text{ mm}^4$. Sketch the BMD and SFD.	CO1	PO1, 2	10
		Fig-8			
		UNIT - V			
6	a)	Determine the vertical deflection at the free end of the rigid frame shown in fig 9 using unit load method. Assume EI is constant.	CO2	PO1, 2	15
		Fig-9			
	b)	State and explain Castigliano's first theorem	CO2	PO1, 2	05
		OR			
7	a)	Determine the vertical deflection at point C in the truss shown in fig 10 below using unit load method. The cross-sectional area of members AD & DE are 1500 mm^2 while those of other members are 1000 mm^2 . Take $E = 200 \text{ kN/mm}^2$.	CO2	PO1, 2	15
		Fig-10			
	b)	Derive the expression for strain energy due to bending.	CO2	PO1,2	05
