

B.M.S. College of Engineering, Bengaluru-560019

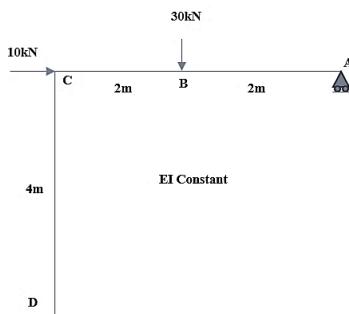
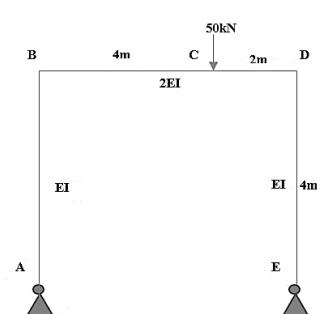
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

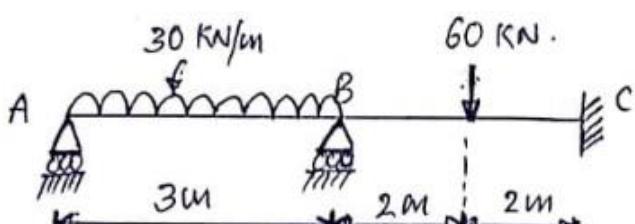
Semester: IV

Branch: CIVIL ENGG.



Duration: 3 hrs.

Course Code: 23CV4PCSTA / 22CV4PCSTA

Max Marks: 100


Course: Structural Analysis

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define degree of static and kinematic indeterminacy with three examples each.	CO1	PO1, PO2	10
	b)	A simply supported beam of span 6 m carries a point load of 12 kN at mid-span. Using Macaulay's method, calculate: (i) Maximum deflection (ii) Slope at supports Take $E=200\times 10^6$ kN/m ² , $I=8\times 10^{-6}$ m ⁴	CO1	PO1, PO2	10
OR					
2	a)	Find the static and kinematic indeterminacy of the portal frames shown in fig. 2a	CO1	PO1, PO2	10
 (i)					
 (ii)					
Fig. 2a					
	b)	Derive the governing differential equation of the elastic curve for a simply supported beam subjected to a point load at mid-span.	CO1	PO1, PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	A simply supported beam of 5 m span is subjected to a UDL of 10 kN/m over the entire span. Using the Moment Area Method, calculate slope at supports and maximum deflection.	CO1	PO1, PO2	10
	b)	Derive expressions for the slope and deflection of a cantilever beam with a point load at its free end using conjugate beam method.	CO1	PO1, PO2	10
OR					
4	a)	A cantilever of 3 m length carries a point load of 8 kN at free end. Using conjugate beam method, determine: (i) Slope at free end (ii) Deflection at free end $E=200\text{GPa}$, $I = 4 \times 10^{-6} \text{ m}^4$	CO1	PO1, PO2	10
	b)	Determine the slope and deflection at the free end of a cantilever beam subjected to a uniformly distributed load using the Moment Area Method.	CO1	PO1, PO2	10
UNIT - III					
5	a)	Distinguish between arch action and beam action. How does the internal force distribution differ between an arch and a straight beam?	CO1	PO1, PO2	10
	b)	A cable of span 12 m is subjected to three-point loads 5 kN, 8 kN, and 7 kN placed at spaced 3 m, 6 m and 9 m respectively from left support. The vertical deflection under 5 kN load is 1 m and if supports are at the same level, Find the maximum tension in the cable.	CO1	PO1, PO2	10
OR					
6	a)	Explain the terms: bending moment, radial shear, and normal thrust in the context of three-hinged arches. Derive expressions for them.	CO1	PO1, PO2	10
	b)	A three-hinged parabolic arch of span 30 m and rise 6 m carries a UDL of 10 kN/m over the entire span. Find the bending moment, Normal thrust and radial shear at quarter span from left support.	CO1	PO1, PO2	10
UNIT - IV					
7	a)	Analyze a fixed beam carrying a central point load using the Theorem of Three Moments. Sketch the bending moment diagram.	CO2	PO1, PO2	10
	b)	Using Clayperon's theorem of three moments, determine the moments at supports for a two-span continuous simply supported	CO2	PO1, PO2	10

		beam (each span 5 m) carrying UDL of 8 kN/m. Assume supports are at same level. Take EI Constant.			
OR					
8	a)	Analyse the continuous beam as shown in the Figure Q7(b) below using Clapeyrons three moment equation. Take EI Constant.	CO2	PO1, PO2	10
Figure Q7(b)					
	b)	Using Consistent Deformation Method, find the support reactions of a propped cantilever beam having a span of 3 m and carrying a point load of 15 kN at mid-span.	CO2	PO1, PO2	10
UNIT - V					
9	a)	Using Castigliano's theorem, find the deflection at mid-span of a simply supported beam of 6 m span carrying a central point load of 10 kN.	CO2	PO1, PO2	10
	b)	Explain the concept of strain energy due to axial load and bending. Derive expressions for strain energy stored in a member under axial load.	CO2	PO1, PO2	10
OR					
10	a)	Explain the principle of virtual work. Using unit load method, determine the deflection at the free end of a cantilever beam subjected to a point load at the free end.	CO2	PO1, PO2	10
	b)	Using Unit Load Method, determine the vertical deflection at the free end of a cantilever beam of 4 m carrying a UDL of 5 kN/m. Take $EI = 12 \times 10^6 \text{ kNm}^2$	CO2	PO1, PO2	10
