

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV5PEACT

Max Marks: 100

Course: Advanced Concrete Technology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS: 10262 – 2019 is permitted

UNIT - I			CO	PO	Marks
1	a)	List the different chemical admixtures used in concrete and discuss the mechanism of action of the important chemical admixtures in modifying the fresh properties of concrete.	CO1	PO 1	10
	b)	Describe the benefits and properties of Limestone Calcined Clay Cement (LC3)	CO1	PO1	6
	c)	Discuss the role of Nano materials in improving the performance of concrete.	CO1	PO1	4
OR					
2	a)	Explain the interfacial transition zone (ITZ) with a sketch and how it can be strengthened by adding supplementary cementitious materials (SCMs).	CO1	PO1	10
	b)	Discuss the differences in the composition, uses, and environmental impact of OPC, blended cement, and composite cement.	CO1	PO1	6
	c)	Summarize the properties of construction demolition aggregates and their use in concrete production.	CO1	PO1	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - II			
3	a)	<p>Design M40 grade Self-compacting concrete (SCC) mix using IS 10262-2019 guidelines for the following data.</p> <p>Type of cement- OPC 53 grade</p> <p>Nominal size of aggregate -20 mm</p> <p>Exposure condition- Moderate</p> <p>Slump – 100mm</p> <p>Degree of site Control-Good</p> <p>Type of aggregate- Crushed angular aggregate</p> <p>Total Powder content-520 kg/m³</p> <p>Maximum cement content- 450 kg/m³</p> <p>Chemical admixture-PCE-based super plasticizer</p> <p>Mineral admixture- Fly ash</p> <p>The specific gravity of cement-3.10</p> <p>The specific gravity of Fly ash- 2.00</p> <p>The specific gravity of fine aggregates-2.60</p> <p>The specific gravity of coarse aggregates- 2.65</p> <p>The specific gravity of superplasticizer-1.05</p>	CO2	PO3	12
	b)	Define High-Performance Concrete (HPC) and explain its composition. Highlight the advantages and applications of HPC in modern construction.	CO2	PO1	8
		OR			
4	a)	<p>Design M40 grade Self-compacting concrete (SCC) mix using IS 10262-2019 guidelines for the following data.</p> <p>Type of cement- PPC conforming to IS 1489 (Part 1)</p> <p>Nominal size of aggregate -20 mm</p> <p>Exposure condition- Severe</p> <p>Slump – 100mm</p> <p>Degree of site Control-Good</p> <p>Type of aggregate- Crushed sub angular aggregate</p> <p>Total Powder content-520 kg/m³</p> <p>Maximum cement content- 450 kg/m³</p> <p>Chemical admixture-PCE-based super plasticizer</p> <p>Mineral admixture- GGBS</p> <p>The specific gravity of cement-3.10</p> <p>The specific gravity of Fly ash- 2.80</p> <p>The specific gravity of fine aggregates-2.65</p> <p>The specific gravity of coarse aggregates- 2.70</p> <p>The specific gravity of superplasticizer-1.10</p>	CO2	PO3	12

	b)	Summarize the evolution of different types of high-performance concrete with their relevance in modern construction industry.	CO2	PO1	8
		UNIT - III			
5	a)	Discuss the materials used in Ultra High-Performance Concrete (UHPC) and their role in enhancing various properties. Explain the particle packing mechanism used in UHPC.	CO2	PO1	10
	b)	List the different fibers used in fiber-reinforced concrete. Explain the effect of fiber addition on the fresh properties of concrete.	CO2	PO1	10
		OR			
6	a)	Explain the durability characteristics of Ultra High-Performance Concrete (UHPC) and its performance towards the resistance to environmental factors like chemical attacks.	CO2	PO1	10
	b)	Discuss the applications of Ultra High-Performance Concrete (UHPC) in construction and its economic benefits, considering factors like carbon units and embodied energy.	CO2	PO1	10
		UNIT - IV			
7	a)	Define Alkali-Activated Concrete (AAC). Discuss the raw materials used in the production of AAC and explain the chemical reactions involved in the activation process.	CO2	PO1	10
	b)	Design geopolymer concrete mix by assuming the Density of geopolymer concrete is 2400kg/m ³ . The molarity of NaOH is - 12 The ratio of NaOH: Na ₂ SiO ₃ - 1.5 Water content in Na ₂ SiO ₃ - 35% Total water content – 170 l/m ³ Fly ash - 15% GGBS - 5% Coarse Aggregate - 60% Fine aggregate - 40%	CO2	PO2	10
		OR			
8	a)	Explain the properties of Alkali-Activated Concrete, including its mechanical strength, durability, and environmental benefits in comparison with Ordinary Portland Cement concrete?	CO2	PO1	10
	b)	Design geopolymer concrete mix by assuming the Density of geopolymer concrete is 2400kg/m ³ . The molarity of NaOH is - 12 The ratio of NaOH: Na ₂ SiO ₃ – 2.20 Water content in Na ₂ SiO ₃ - 35% Total water content – 165 l/m ³ Fly ash - 14% GGBS - 6% Coarse Aggregate - 55% Fine aggregate - 45%	CO2	PO2	10

UNIT - V					
	9	a)	Define the term "rheology" in the context of concrete. Discuss the key factors affecting the rheology of fresh concrete, including materials and environmental conditions.	CO2	PO1 10
		b)	Explain the rheological behavior of 3D printable concrete and the key challenges and considerations in achieving proper rheology for 3D printing applications?	CO2	PO1 10
OR					
	10	a)	Explain the factors affecting the rheology of fresh concrete.	CO2	PO1 10
		b)	List and explain the different types of rheometers used to measure the rheological properties of fresh concrete.	CO2	PO1 10

B.M.S.C.E. - ODD SEM 2024-25