

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV5PEACT / 22CV5PEACT

Max Marks: 100

Course: Advanced Concrete Technology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain blended and composite cements. Discuss their properties				<i>CO1</i>	<i>PO1</i>	10
	c)	Outline the role of aggregates in concrete. Discuss the roadmap ahead for the concrete industry to cope with severe shortage of conventional fine aggregates in the near future?				<i>CO1</i>	<i>PO1</i>	10
OR								
2	a)	'LC3 cement is a modern sustainable cement', justify your agreement or disagreement with the statement.				<i>CO1</i>	<i>PO1</i>	10
	b)	With relevant chemical reactions, discuss the process of hydration of cement and its role in strength gain in concrete.				<i>CO1</i>	<i>PO1</i>	10
UNIT - II								
3	a)	Enumerate the different high performance concrete innovated in the industry and their applications				<i>CO2</i>	<i>PO1</i>	6
	b)	Discuss the factors affecting the rheology of concrete				<i>CO2</i>	<i>PO1</i>	6
	c)	Discuss the need for self-compacting concrete in the construction industry and the requirements to produce self-compacting concrete.				<i>CO2</i>	<i>PO1</i>	8
OR								
4	a)	Discuss in what way the high performance may contribute to carbon units and embodied energy in the industry.				<i>CO2</i>	<i>PO1</i>	5
	b)	Design a SCC mix for the following data. Grade designation M-30 Nominal size of aggregate 20 mm Type of cement: OPC 53 grade conforming to IS 269 Nominal maximum size of aggregate: 20 mm Exposure conditions as per Table 3 and Table 5 of IS 456: Severe (for RCC)				<i>CO2</i>	<i>PO3</i>	15

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>Maximum water cement ratio-0.45 Degree of site control: Good Type of aggregate: Crushed angular aggregate Maximum cement content (OPC Content): 450 kg/m³ Type of mineral admixture Fly Ash Type of chemical admixture: PCE Slump flow class: 750 – 850 mm; Maximum cement content 450 kg/m³ Specific gravity of cement = 3.15 Specific gravity of fly ash = 2.2 Specific gravity of fine aggregate = 2.65 Specific gravity of coarse aggregate = 2.70 Specific gravity of coarse aggregate = 1.08 Water absorption of coarse aggregate = 0.5% Water absorption of fine aggregate = 1%</p>			
UNIT - III					
5	a)	Relate the mechanical properties of FRC (Fiber Reinforced Concrete) with Normal concrete. List the natural and artificial fibers used for making FRC.	CO2	PO1	10
	b)	Discuss the Importance of mineral and chemical admixtures in Ultra-high-performance concrete (UHPC).	CO2	PO1	10
OR					
6	a)	Briefly outline the procedure to proportion an Ultra-high-performance concrete (UHPC) mix, and mention its applications.	CO2	PO1	10
	b)	Describe and discuss the microstructural characteristics of Ultra-high-performance concrete (UHPC) mix, and compare it with that of conventional concrete.	CO2	PO1	10
UNIT - IV					
7	a)	Describe the reaction chemistry of alkali activated concrete.	CO2	PO1	10
	b)	Explain the methodology of mix proportioning alkali activated concrete mixes with a flow chart.	CO2	PO1	10
OR					
8	a)	<p>Design geopolymer concrete (GPC) mix by assuming the Density of geopolymer concrete is 2400kg/m³. The molarity of NaOH is - 12 The ratio of NaOH: Na₂SiO₃ - 2.0 Total water content – 140 l/m³ Water content in Na₂SiO₃-33% Fly ash - 14% GGBS - 6% Coarse Aggregate - 60% Fine aggregate - 40%</p>	CO2	PO3	10
	b)	Briefly discuss the materials used for production of Geo-Polymer concrete. Compare and discuss the same with conventional concrete.	CO2	PO1	10

UNIT - V					
	9	a)	Define rheometers? Mention any three types of rheometers with their advantages and disadvantages	CO2	PO1
		b)	Discuss the basic rheological parameters of 3D printable concrete	CO2	PO1
OR					
	10	a)	Explain the various factors affecting the rheology of fresh concrete with suitable examples	CO2	PO1
		b)	Compare and contrast the rheological characteristics of normal concrete, Self-compacting concrete (SCC), High performance concrete (HPC) and Ultra-high-performance concrete (UHPC).	CO2	PO1

REAPPEAR EXAMS 2024-25