

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

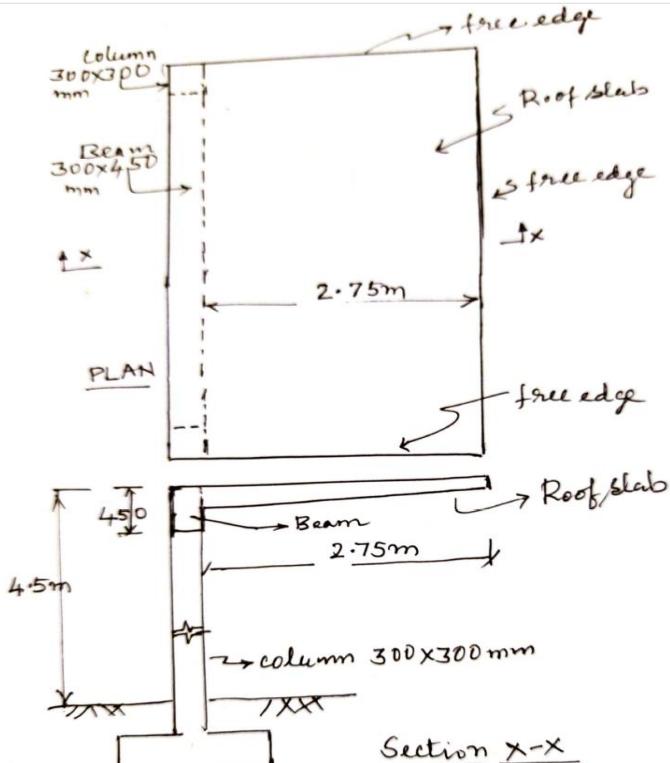
Branch: Civil Engineering

Course Code: 22CV5PCDRC

Course: Design of RCC structural elements

Semester: V

Duration: 3 hrs.


Max Marks: 100

Instructions:

1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of IS 456-2000 and only SP-16 charts for column design permitted

		UNIT - 1	CO	PO	Marks
1	a)	The IS code limits the compressive strength of concrete in structural design to $0.67f_{ck}$ and not f_{ck} . Explain the statement.	CO1	PO1	4
	b)	Explain the stress block. Obtain the expression for depth of critical neutral axis for a section if M25 concrete and Fe 415 steel is used	CO1	PO1 PO2	6
	c)	A rectangular beam of overall size 350 x 600 mm is reinforced with 4 bars of 25 mm diameter on the tension side and 4 bars of 16 mm diameter bars on the compression zone. Find the permissible central concentrated load the beam can carry over a simply supported span of 6 m. Assume M20 Concrete and Fe 415 steel. Level of exposure is moderate.	CO1	PO1 PO2	10
		OR			
2	a)	Explain the term Limit State. Discuss the various limit states to be considered in reinforced concrete design	CO1	PO1	5
	b)	Calculate the moment of resistance of a T-section with the following data; (i)Effective flange width =2100 mm (ii) Depth of flange 125 mm (iii)Width of web=250 mm (iv) overall depth 650 mm (v) Reinforcement consists of 6 bars of 25 mm diameter(vi) Materials used –M25 concrete and Fe500 steel (vii) level of exposure –moderate What safe udl a beam of 6m effective simply supported span can carry if the given T-section is used.	CO1	PO1 PO2	15

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT -2					
3	The floor of a hall is 7.5 m x 10.5m to the center of supports, width of support being 300 mm. There are two beams spaced at 3.5 m c/c spanning the short length of the hall. The thickness of the floor slab is 100 mm. Live load on the floor is 4.5 KN/m ² . Load due to floor finishes is 1 KN/m ² . Design the intermediate T-beam using M20 concrete and Fe 500 steel	CO1	PO1, PO2, PO3	20	
UNIT-3					
4 a)	Distinguish between one-way and two –way slabs	CO2	PO1	4	
b)	Design the roof slab of a way side bus stand shelter having a clear span of 2.75m as shown in Fig. Check the adequacy of your design by applying all necessary checks. The live load on slab may be assumed as 1.75 KN/m ² . Material used are M20 concrete and Fe 415 steel. Sketch the reinforcement details	CO2	PO1 PO2 PO3	16	
OR					
5	Design a rectangular slab (supported on all its four edges) over a class room of size 4.75 m x 6 m. The two adjacent edges of the slab are discontinuous and the remaining two edges are continuous. A finishing surface of concrete of 20 mm thick is provided over the slab. The live load on the slab is 3.5 KN/m ² . Use M20 concrete and Fe415 grade steel. Sketch the reinforcement details.	CO2	PO1 PO2. PO3	20	

UNIT-4					
6	a)	Explain the need for providing lateral ties in RC columns.	CO 1	PO1	4
	b)	A corner column 300 mmx 450 mm located in the lower most storey of braced frames is subjected to factored loads $P_u=1200$ KN, $M_{ux}=200$ KNm , $M_{uy}=110$ KNm. The un supported length of the column is 3.5 m. Design the reinforcement in the column assuming M25 concrete and Fe415 steel.	CO2	PO1, PO2 , PO3	16
UNIT-5					
7		Design an isolated rectangular footing of uniform thickness for column carrying a service load of 2000 KN. The bearing capacity of the soil is 200 KN/m ² . Use M20 concrete and Fe 415 steel . Sketch the reinfocement details.	CO2	PO1, PO2 , PO3	20
