

|        |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: V**

**Branch: Civil Engineering**

**Duration: 3 hrs.**

**Course Code: 23CV5PCDRC / 22CV5PCDRC**

**Max Marks: 100**

**Course: Design of RC Structural Elements**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
 2. Missing data, if any, may be suitably assumed.  
 3. Use of IS 456-2000 and charts 31 to 38, 43 to 50, 63 to 65 of SP16 & IS875-2(1987) permitted.

|                                                                                                                                                                                                       |   |    | <b>UNIT - I</b>                                                                                                                                                                                                                                                                                                                                               | <i>CO</i>  | <i>PO</i>     | <b>Marks</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1 | a) | Explain briefly i) Partial safety factor ii) Limiting depth of neutral axis iii) Moment of resistance                                                                                                                                                                                                                                                         | <i>CO1</i> | <i>PO1</i>    | <b>06</b>    |
|                                                                                                                                                                                                       |   | b) | An RC of size 300 x 500 mm is reinforced with 3 bars of 20mm diameter in the tension zone and 2 bars of 16 mm diameter in the compression zone. Calculate the allowable point load that can be applied at the midspan of a simply supported beam of effective span 6 m. Assume M25 grade concrete mix, Fe-415 grade steel. Assume exposure level as moderate. | <i>CO1</i> | <i>PO2</i>    | <b>14</b>    |
| <b>OR</b>                                                                                                                                                                                             |   |    |                                                                                                                                                                                                                                                                                                                                                               |            |               |              |
|                                                                                                                                                                                                       | 2 | a) | Explain the development length with the help of a neat sketch. Also mention the reasons for providing development length.                                                                                                                                                                                                                                     | <i>CO1</i> | <i>PO1</i>    | <b>6</b>     |
|                                                                                                                                                                                                       |   | b) | An isolated simply supported T-beam has a flange width of 2400mm and flange thickness of 120mm. The effective span of beam is 3.6m. The effective depth of beam is 580mm and web width is 300mm. If $A_{st}$ = balanced steel, determine the maximum safe UDL the beam can carry. Use M20 concrete and Fe415 steel.                                           | <i>CO1</i> | <i>PO2</i>    | <b>14</b>    |
| <b>UNIT - II</b>                                                                                                                                                                                      |   |    |                                                                                                                                                                                                                                                                                                                                                               |            |               |              |
|                                                                                                                                                                                                       | 3 |    | Design a rectangular beam for flexure and shear to carry an UDL of 12 kN/m all-inclusive over a clear span of 4 m. Beam is supported on a 230 mm thick wall. Adopt M20-grade concrete and Fe-415-grade steel.                                                                                                                                                 | <i>CO2</i> | <i>PO2,3</i>  | <b>20</b>    |
|                                                                                                                                                                                                       |   |    |                                                                                                                                                                                                                                                                                                                                                               |            |               |              |
| <b>OR</b>                                                                                                                                                                                             |   |    |                                                                                                                                                                                                                                                                                                                                                               |            |               |              |
|                                                                                                                                                                                                       | 4 | a) | Explain with sketches, the various modes of shear failure of an RC beam                                                                                                                                                                                                                                                                                       | <i>CO1</i> | <i>PO1</i>    | <b>6</b>     |
|                                                                                                                                                                                                       |   | b) | A R.C beam has cross section 300mm X 600 mm and is subjected to the following design forces: bending moment=115                                                                                                                                                                                                                                               | <i>CO2</i> | <i>PO1,2,</i> | <b>14</b>    |

|    |    |                                                                                                                                                                                                                                                                                                                             |     |             |           |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----------|
|    |    | kN-m, shear force=95 kN and torsional moment =45 kN-m. Design longitudinal and shear reinforcement for the section. Assume M25 concrete and Fe 415 steel.                                                                                                                                                                   |     | 3           |           |
|    |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                           |     |             |           |
| 5  | a) | Distinguish between one way slab and two-way slab                                                                                                                                                                                                                                                                           | CO1 | PO2,3       | <b>04</b> |
|    | b) | Design a simply supported one-way slab over a clear span of 3.5m. It carries a live load of 4 kN/m <sup>2</sup> and a floor finish of 1.5 kN/m <sup>2</sup> . The width of the supporting wall is 230 mm. Adopt M25-grade concrete and Fe-500-grade steel. Apply the necessary checks and sketch the reinforcement details. | CO2 | PO1,2,<br>3 | <b>16</b> |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                   |     |             |           |
| 6  |    | Design a unrestrained slab for a hall measuring 4mx6m (clear) simply supported on all sides on 230 mm thick walls to carry a live load of 3kN/m <sup>2</sup> . Adopt M20-grade concrete and Fe-415grade steel. Sketch the reinforcement details.                                                                            | CO2 | PO1,2,<br>3 | <b>20</b> |
|    |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                            |     |             |           |
| 7  | a) | Explain the difference between short column and long column?                                                                                                                                                                                                                                                                | CO1 | PO2,3       | <b>04</b> |
|    | b) | Design a rectangular column of 3.5 m unsupported length, restrained in position and direction at both ends, to carry an axial load of 1500 kN. Use M25-grade concrete and Fe500 grade steel. Apply the necessary checks and show the reinforcement details of the column.                                                   | CO2 | 1,2,3       | <b>16</b> |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                   |     |             |           |
| 8  | a) | What is the role of transverse reinforcement in columns? State the provisions of IS 456 with regard to design of transverse reinforcement.                                                                                                                                                                                  | CO1 | 1           | <b>6</b>  |
|    | b) | Design a rectangular column of size 300x400 mm to carry an axial load of 1000 kN with a uniaxial bending of 50 kN-m about the major axis. Use M20 grade concrete and Fe 415 steel. Provide reinforcement equally on all faces. Sketch the details of reinforcement.                                                         | CO2 | PO1,2,<br>3 | <b>14</b> |
|    |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                             |     |             |           |
| 9  |    | Design a dog legged stair for a building in which the vertical distance between floors is 3.4 m. The stair hall measures 2.5 m x 5 m (clear). The live load may be taken as 1.75kN/m <sup>2</sup> . Use M25 grade concrete and Fe 500 steel. The landing slab rests on 230 mm thick wall. Show the reinforcement details.   | CO2 | PO1,2,<br>3 | <b>20</b> |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                   |     |             |           |
| 10 |    | Design a rectangular isolated footing of uniform thickness for an RC column bearing a vertical load of 600 kN and having a size of 400 mm x 600 mm. The safe bearing capacity of the soil may be taken as 120 kN/m <sup>2</sup> . Use M25 concrete and Fe 500 steel. Sketch the reinforcement details.                      | CO2 | PO1,2,<br>3 | <b>20</b> |

\*\*\*\*\*