

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV5PCENV / 22CV5PCENV

Max Marks: 100

Course: Environmental Engineering II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explicate the differences between conservancy and water-carriage systems of sanitation.			CO1	PO1	10
		b)	Design a sewer to serve a population of 36,000 the rate of water supply being 135 Lpcd of which 80% finds its way into sewer. The sewer are laid at a slope of 1 in 625 and sewer should be designed to carry three times dry weather flow when running full. $N=0.012$.			CO1	PO3	10
	OR							
	2	a)	Elucidate briefly the different types of sewerage system. Mention advantages and disadvantages of each.			CO1	PO1	10
		b)	Calculate the diameter and discharge of a circular sewer laid at a slope of 1 in 400 when it is running half full and with a velocity of 1.9 m/s. Use $n = 0.012$.			CO1	PO3	10
	UNIT - II							
	3	a)	Explain in detail the process of laying of sewer with neat sketches.			CO2	PO1	10
		b)	Discuss the following with a neat sketch: i. Catch basins ii. Manhole.			CO2	PO1	10
	OR							
	4	a)	Identify the different shapes of sewers and assess their applications on the field with neat sketches.			CO2	PO2	10
		b)	Analyse the function and applications of various types of sewer traps.			CO2	PO2	10
UNIT - III								
5	a)	Assess the physical, chemical and biological characteristics of sewage.			CO3	PO2	10	

	b)	The 5 day 30°C BOD of a sewage sample is 110 mg/L. Calculate its 5 day 20°C BOD. Assume the deoxygenation constant at 20°C? K_{20} as 0.1.	CO3	PO3	10
		OR			
6	a)	Discuss self-purification phenomenon of streams? Analyse the different zones of self-purification with a neat sketch.	CO3	PO2	10
	b)	A partially treated town sewage 1.5 MLD having a BOD of 100 mg/L is to be discharged into a stream. The stream water has a BOD of 10 mg/L. If the final BOD of the stream is not to exceed 30 mg/L, what should be the minimum flow of the stream?	CO3	PO3	10
		UNIT - IV			
7	a)	Draw a flow diagram illustrating a municipal sewage treatment plant, including the sludge digestion process. Identify the removal of key pollutants at each treatment stage.	CO3	PO2	10
	b)	Calculate the diameter, depth and weir loading of a primary sedimentation tank, using the following data: Sewage flow - 6 MLD Detention period - 2 hrs Overflow rate - 1500 L/m ² /h	CO3	PO3	10
		OR			
8	a)	Explain with a neat sketch, the working of the following secondary treatment units i. Activated sludge process ii. Trickling filter	CO3	PO2	10
	b)	The sewage is flowing at 4.5 MLD from a primary clarifier to a standard rate trickling filter. The 5-day BOD of the influent is 160 mg/L. The value of the adopted organic loading is to be 160 gm/m ³ /day and the surface loading is 2000 L/m ² /d. Determine the volume of the filter and its depth. Also calculate the efficiency of this filter unit.	CO3	PO3	10
		UNIT - V			
9	a)	Analyze the working principle of a sequential batch reactor (SBR) with a neat sketch.	CO3	PO1	10
	b)	Discuss the advantages and disadvantages of reuse and recycling of sewage.	CO3	PO2	10
		OR			
10	a)	Elucidate the working principle of membrane bioreactor (MBR) with a neat sketch.	CO3	PO1	10
	b)	Discuss various techniques for the removal of nitrogen and phosphorous from wastewater.	CO3	PO2	10
