

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV5PCGTE / 22CV5PCGTE

Max Marks: 100

Course: Geotechnical Engineering - 2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following terms with relevant expressions: i) Compression Index ii) Coefficient of Compressibility iii) Coefficient of Volume change	CO1	PO1	6
	b)	List the assumptions and limitations made in Terzaghi's one dimensional consolidation theory	CO1	PO1	6
	c)	A 2m clay layer ($e = 0.92$, $G = 2.72$, $C_c = 1/3$) is overlain with 3m thick sand layer ($e = 0.5$, $G = 2.62$, Moisture Content = 0). The water table is 1.5m below the ground (sand) surface. If a 3m thick landfill ($\gamma = 17.3 \text{ kN/m}^3$) is placed over the existing ground surface, Compute the consolidation settlement of the clay layer	CO1	PO2	8
OR					
2	a)	Explain determination of pre-consolidation pressure by Casagrande method with neat sketch.	CO1	PO1	6
	b)	Explain with a neat sketch the principle and methodology of determining coefficient of consolidation by square root time fitting method	CO1	PO1	6
	c)	A 3.2m thick layer of saturated clay under a surcharge loading underwent 90% primary consolidation in 80 days with double drainage. For $U > 0.60$, $T_v = 1.7813 - 0.9332 \log_{10}(100 - U\%)$ (i) Determine the coefficient of consolidation for the pressure range (ii) For a 10cm thick, specimen of the said clay, how long will it take to undergo 90% consolidation in the laboratory for a similar pressure range?	CO1	PO2	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II																
3	a)	Discuss critically the Rankine's and Coulomb's earth pressure theory	CO1	PO1	6											
	b)	A smooth retaining wall 6m high retains dry granular backfill weighing 16 kN/m^3 . The Active earth thrust on the wall is 96 kN/m of the wall. Find the angle of internal friction of the soil.	CO1	PO2	4											
	c)	A retaining wall of height 9m retains two soils. The top soil consists of 4.5m thick with $\gamma=16\text{ kN/m}^3$, $\phi=30^\circ$, $c=0$. The bottom soil consists of $\gamma_{\text{sat}}=18\text{ kN/m}^3$, $\phi=35^\circ$, $c=5\text{kPa}$. The water table is located at a depth of 4.5m from the ground surface. Considering 1m length of the wall, <ul style="list-style-type: none"> (i) Draw the pressure diagram across the length of the wall (ii) Determine the total active force acting on the wall (iii) Determine the location of the total active force measured from the bottom of the wall. 	CO1	PO2	10											
OR																
4	a)	Discuss three types of lateral earth pressure with sketches and examples	CO1	PO1	6											
	b)	Sketch and explain the pressure diagram for retaining wall with cohesive backfill.	CO1	PO1	4											
	c)	A two-layer cohesive horizontal backfill is supported by a 10 m high vertical smooth wall. Determine the Rankine active force per unit length of the wall before a tensile crack occurs in the top layer. Also, determine the line of action of the resultant in both cases. The soil layer parameters are given below: <table border="1" style="margin-left: 20px;"> <tr> <td>0-5m</td><td>Top layer</td><td>$C_U = 12\text{kPa}$</td><td>$\phi_U = 0^\circ$</td><td>$\gamma = 17\text{ kN/m}^3$</td></tr> <tr> <td>5-10 m</td><td>Bottom layer</td><td>$C_U = 35\text{kPa}$</td><td>$\phi_U = 10^\circ$</td><td>$\gamma = 18\text{ kN/m}^3$</td></tr> </table>	0-5m	Top layer	$C_U = 12\text{kPa}$	$\phi_U = 0^\circ$	$\gamma = 17\text{ kN/m}^3$	5-10 m	Bottom layer	$C_U = 35\text{kPa}$	$\phi_U = 10^\circ$	$\gamma = 18\text{ kN/m}^3$	CO1	PO2	10	
0-5m	Top layer	$C_U = 12\text{kPa}$	$\phi_U = 0^\circ$	$\gamma = 17\text{ kN/m}^3$												
5-10 m	Bottom layer	$C_U = 35\text{kPa}$	$\phi_U = 10^\circ$	$\gamma = 18\text{ kN/m}^3$												
UNIT - III																
5	a)	Explain causes for slope instability and also list the methods of stabilisation of slopes	CO3	PO1	6											
	b)	Explain Swedish slip circle method for the stability analysis of slope in cohesive soil?	CO3	PO1	6											
	c)	A canal is to be excavated through a soil with $c = 15\text{ kN/m}^2$, $\phi = 20^\circ$, $e = 0.9$ and $G = 2.67$. The side slope is 1 in 1. The depth of the canal is 6 m. Determine the factor of safety with respect to cohesion	CO3	PO2	8											

		<p>i) When the canal runs full. ii) When the canal is rapidly emptied.</p> <table border="1"> <tr> <td>ϕ</td><td>0°</td><td>5°</td><td>10°</td><td>15°</td><td>20°</td><td>25°</td></tr> <tr> <td>$i = 45^\circ$</td><td>0.170</td><td>0.136</td><td>0.108</td><td>0.083</td><td>0.062</td><td>0.044</td></tr> </table>	ϕ	0°	5°	10°	15°	20°	25°	$i = 45^\circ$	0.170	0.136	0.108	0.083	0.062	0.044			
ϕ	0°	5°	10°	15°	20°	25°													
$i = 45^\circ$	0.170	0.136	0.108	0.083	0.062	0.044													
		OR																	
6	a)	Explain Fellenius method for location of critical slip circle	CO3	PO1	6														
	b)	A finite slope of height 9m is inclined at 1.5H:1V. If the Fellenius directional angles are $\alpha = 26^\circ$ and $\beta = 35^\circ$, calculate the factor of safety against toe failure of the slope by method of slices. Given: $\gamma = 19\text{kN/m}^3$, $c = 25\text{kPa}$, $\phi = 20^\circ$	CO3	PO2	14														
		UNIT - IV																	
7	a)	Explain the design features affecting the sample disturbance	CO2	PO1	6														
	b)	List the assumptions in Boussinesq's theory of stress distribution	CO2	PO1	6														
	c)	An overhead water tank is supported at a depth of 3 m by four isolated square footing of sides 2 m each placed in a square pattern with a centre-to-centre spacing of 8 m. Compute the vertical stress at the foundation level (i) at the centre of the four footings and (ii) at the centre of one footing. Adopt Boussinesq's point load approximation. The load on each footing is 700 kN.	CO2	PO2	8														
		OR																	
8	a)	Explain with neat sketch the seismic refraction method of soil exploration.	CO2	PO1	6														
	b)	With neat sketches explain contact pressure below foundations (both flexible and rigid) for clayey and sandy type of soils	CO2	PO1	6														
	c)	Calculate the stress in a soil mass below the centre of a uniformly loaded circular area of radius 1.5 m with a pressure of 60kN/m^2 and thus obtain the exact depth at which the stress reduces to 10% of the applied stress.	CO2	PO2	8														

UNIT - V														
	9	a)	Discuss the effect of ground water table on bearing capacity of soil with a neat sketch considering various locations of GWT.	CO3	PO1 6									
		b)	A square footing has dimensions of 2m x 2m and a depth of 2m. Determine its ultimate bearing capacity in pure clay with an unconfined compressive strength of 0.15N/mm^2 , $\phi=0^\circ$ and $\gamma=16.677\text{kN/m}^3$. Take $N_c = 5.7$, $N_q = 1$, and $N_y = 0$.	CO3	PO2 6									
		c)	A circular footing 2.5m in diameter is located at a depth of 1.8m below the ground surface. The ground water table is located at a depth of 1.1m below the ground level. The unit weight of the soil above and below the water table is 18.5kN/m^3 and 19.2kN/m^3 . $c=80\text{kPa}$ and $\phi=25^\circ$. Assume general shear failure and use a factor of safety of 3. Given $N_c=25.13$, $N_q=12.72$, $N_y=8.34$ Determine <ol style="list-style-type: none"> The ultimate bearing capacity The ultimate bearing capacity if the water table rises beyond the ground surface. What is the percentage reduction in ultimate bearing capacities for the above cases? 	CO3	PO2 8									
OR														
	10	a)	Distinguish between general shear failure and local shear failure	CO3	PO1 6									
		b)	With a neat sketch explain plate load test method to evaluate bearing capacity of soils.	CO3	PO1 6									
		c)	Plate load tests were conducted in a c - ϕ soil, using square plates of two different sizes and the following results were obtained <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Load</th><th>Square plate area</th><th>Settlement</th></tr> </thead> <tbody> <tr> <td>40kN</td><td>900cm^2</td><td>2.5cm</td></tr> <tr> <td>100kN</td><td>3600cm^2</td><td>2.5cm</td></tr> </tbody> </table> Determine the size of square footing to carry a load of 800kN at the same specified settlement of 25mm.	Load	Square plate area	Settlement	40kN	900cm^2	2.5cm	100kN	3600cm^2	2.5cm	CO3	PO2 8
Load	Square plate area	Settlement												
40kN	900cm^2	2.5cm												
100kN	3600cm^2	2.5cm												
