

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV5PCHEN / 22CV5PCHWE

Max Marks: 100

Course: Highway Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I									CO	PO	Marks		
1	a)	List the characteristics of road transport.									CO1	PO1,2	4
	b)	Describe the framework of different studies involved in planning surveys.									CO1	PO1,2	8
	c)	Decide the priority of roads A and B for phasing a road development plan. Assume utility of 1, 2 and 4 units for three groups of village served and 0.1 unit per ton of agricultural products served.									CO1	PO1,2	8
OR													
2	a)	Enumerate the scope of highway engineering.									CO1	PO1,2	6
	b)	Classify roads based on third 20-year road development plan.									CO1	PO1,2	7
	c)	Describe the evolution of Rural Road Development Plan in India.									CO1	PO1,2	7
UNIT - II													
3	a)	Explain the factors governed by right of way.									CO2	PO1,2,3	6
	b)	Define i. Ruling gradient; ii. Limiting gradient; iii. Exceptional gradient.									CO2	PO1,2,3	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Calculate the minimum sight distance on a highway with a design speed of 80 kmph at a descending gradient of 6 %.	CO2	PO1,2,3	8																		
		OR																					
4	a)	Describe various elements forming the road margins.	CO2	PO1,2,3	6																		
	b)	Enumerate the factors affecting overtaking sight distance.	CO2	PO1,2,3	6																		
	c)	Calculate the super elevation required for a road 7.5 m wide on a curve of 240 m radius for a permissible speed of 80 kmph.	CO2	PO1,2,3	8																		
		UNIT - III																					
5	a)	Elaborate on the factors influencing design of pavements.	CO4	PO1,2,3	6																		
	b)	Highlight on the design considerations of thin white topping as per IRC SP 76 - 2015 recommendations.	CO4	PO1,2,3	6																		
	c)	A plate load test was conducted on a soaked subgrade during monsoon season using a plate diameter of 30 cm. The load values corresponding to the mean settlement dial readings are given below. Determine the modulus of subgrade reaction for the standard plate.	CO3	PO1,2	8																		
		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td>Mean settlement values, mm</td> <td>0.0</td> <td>0.27</td> <td>0.51</td> <td>0.77</td> <td>1.01</td> <td>1.27</td> <td>1.54</td> <td>1.77</td> </tr> <tr> <td>Load, kg</td> <td>0.0</td> <td>530</td> <td>1000</td> <td>1280</td> <td>1520</td> <td>1610</td> <td>1710</td> <td>1830</td> </tr> </table>	Mean settlement values, mm	0.0	0.27	0.51	0.77	1.01	1.27	1.54	1.77	Load, kg	0.0	530	1000	1280	1520	1610	1710	1830			
Mean settlement values, mm	0.0	0.27	0.51	0.77	1.01	1.27	1.54	1.77															
Load, kg	0.0	530	1000	1280	1520	1610	1710	1830															
		OR																					
6	a)	Explain the key principles behind Mechanistic-Empirical Pavement Design approach.	CO4	PO1,2,3	6																		
	b)	Identify a laboratory test to determine whether a bitumen sample is oxidized. Outline the procedure as specified in the IS code.	CO3	PO1,2	6																		
	c)	Using the data given below, calculate the wheel load stresses at interior, edge and corner regions of a cement concrete pavement using Westergaard's stress equations. Wheel load = 8100 kg; Modulus of elasticity of cement concrete = 3.0×10^5 kg/cm ² ; pavement thickness = 18.5 cm; Poisson's ratio of concrete = 0.15; Modulus of sub-grade reaction = 6.0 kg/cm ³ ; Radius of contact area = 15 cm;	CO4	PO1,2,3	8																		
		UNIT - IV																					
7	a)	Write short notes on – (i) CTB (ii) FDR	CO4	PO1,2,3	10																		
	b)	Describe the step-by-step procedure for constructing dense bituminous macadam.	CO4	PO1,2,3	10																		
		OR																					
8	a)	With a neat sketch explain joints in cement concrete pavements.	CO4	PO1,2,3	10																		

		b)	Describe the step-by-step procedure for constructing granular sub base.	CO4	PO1,2,3	10
			UNIT - V			
	9	a)	Enumerate the requirements of highway drainage. Explain any one method of sub- surface drainage system.	CO4	PO1,2,3	10
		b)	Write short notes on NPV, IRR.	CO1	PO1,2	10
			OR			
	10	a)	Explain the design criteria for filter material in highway drainage, considering permeability and piping ratios.	CO4	PO1,2,3	10
		b)	With neat sketches explain different types of flexible pavement distresses.	CO4	PO1,2,3	10
