

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV5PCHIE

Course: Hydrology and Irrigation Engineering

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I									CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to the evaluator will be treated as malpractice.	1	a)	Explain, with a neat sketch, Horton's representation of the hydrological cycle.							CO 1	PO 1	6
		b)	Explain the construction and working of Simon's rain gauge with a neat sketch.							CO 1	PO 1	6
		c)	A catchment has seven rain gauge stations. In a year, the annual rainfall recorded by the gauges are as follows:							CO 1	PO 1	8
OR												
	2	a)	With appropriate example, explain the term return period and its relevance in hydrology.							CO 1	PO 1	5
		b)	A precipitation station X in a catchment was inoperative for some time during which a storm occurred. At three stations A, B and C surrounding X, the total precipitation recorded during this storm are 75, 58, and 47 mm respectively. The normal annual precipitation at stations X, A, B and C are respectively 757, 826, 618, and 482 mm. Estimate the missing storm precipitation data at station X using the normal ratio method.							CO 1	PO 1	8
		c)	Define precipitation. Explain different forms and types of precipitation.							CO 1	PO 1	7
UNIT - II												
	3	a)	Define evaporation. Explain the factors affecting the same. With a neat sketch, explain the measurement of evaporation using ISI class A evaporation.							CO 1	PO 1	10

	b)	<p>The mass curve of an isolated storm in a 500 ha watershed is as follows.</p> <table border="1"> <tr> <td>Time from start (h)</td><td>0</td><td>2</td><td>4</td><td>6</td><td>8</td><td>10</td><td>12</td><td>14</td><td>16</td><td>18</td></tr> <tr> <td>Cumulative rainfall (cm)</td><td>0</td><td>0.8</td><td>2.6</td><td>2.8</td><td>4.1</td><td>7.3</td><td>10.8</td><td>11.8</td><td>12.4</td><td>12.6</td></tr> </table> <p>If the direct runoff produced by the storm is measured at the outlet of the watershed as 0.340 Mm^3, estimate the Φ index of the storm and the duration of rainfall excess.</p>	Time from start (h)	0	2	4	6	8	10	12	14	16	18	Cumulative rainfall (cm)	0	0.8	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6			10																						
Time from start (h)	0	2	4	6	8	10	12	14	16	18																																							
Cumulative rainfall (cm)	0	0.8	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6																																							
		OR																																															
4	a)	Define infiltration capacity. With a neat sketch explain how infiltration capacity is measured in the field. Also explain a typical infiltration capacity curve.	<i>CO 1</i>	<i>PO 1</i>	10																																												
	b)	An infiltration test was conducted by using an infiltrometer of inner ring diameter of 35 cm. The following results were recorded. Determine the infiltration rate for the given time intervals.	<i>CO 1</i>	<i>PO 1</i>	10																																												
		<table border="1"> <tr> <td>Time from start of test (min)</td> <td>0</td> <td>5</td> <td>10</td> <td>30</td> <td>60</td> <td>120</td> <td>180</td> <td>240</td> <td>300</td> <td>360</td> </tr> <tr> <td>Volume of water added since start (cm^3)</td> <td>0</td> <td>46</td> <td>90</td> <td>246</td> <td>435</td> <td>662</td> <td>842</td> <td>1000</td> <td>1154</td> <td>1300</td> </tr> </table>	Time from start of test (min)	0	5	10	30	60	120	180	240	300	360	Volume of water added since start (cm^3)	0	46	90	246	435	662	842	1000	1154	1300																									
Time from start of test (min)	0	5	10	30	60	120	180	240	300	360																																							
Volume of water added since start (cm^3)	0	46	90	246	435	662	842	1000	1154	1300																																							
		UNIT - III																																															
5	a)	Explain the rational method to estimate the peak flow from a catchment.	<i>CO 1</i>	<i>PO 1</i>	5																																												
	b)	A 6-hr unit hydrograph of a basin is triangular, with a peak of $100 \text{ m}^3/\text{s}$ occurring at 24 hrs from the start, and the base period is 72 hrs. Determine the catchment area.	<i>CO 1</i>	<i>PO 1</i>	5																																												
	c)	The following observations were made at a gauging site while recording stream gauge data. The rating equation of the current meter is given as $V = 0.62N_s + 0.032 \text{ m/s}$, where N_s is in revolutions per second. Calculate the discharge in the stream.	<i>CO 1</i>	<i>PO 2</i>	10																																												
		<table border="1"> <tr> <td>Distance from bank (m)</td> <td>0</td> <td>2</td> <td>5</td> <td>8</td> <td>12</td> <td>15</td> <td>18</td> <td>21</td> <td>23</td> <td>24</td> </tr> <tr> <td>Depth (m)</td> <td>0</td> <td>0.6</td> <td>1.2</td> <td>1.8</td> <td>2.4</td> <td>1.9</td> <td>1.4</td> <td>1.1</td> <td>0.5</td> <td>0</td> </tr> <tr> <td>current meter revolutions at 0.6 depth</td> <td>0</td> <td>60</td> <td>90</td> <td>120</td> <td>150</td> <td>140</td> <td>100</td> <td>80</td> <td>50</td> <td>0</td> </tr> <tr> <td>Time (s)</td> <td>0</td> <td>150</td> <td>140</td> <td>140</td> <td>160</td> <td>140</td> <td>140</td> <td>140</td> <td>140</td> <td>0</td> </tr> </table>	Distance from bank (m)	0	2	5	8	12	15	18	21	23	24	Depth (m)	0	0.6	1.2	1.8	2.4	1.9	1.4	1.1	0.5	0	current meter revolutions at 0.6 depth	0	60	90	120	150	140	100	80	50	0	Time (s)	0	150	140	140	160	140	140	140	140	0			
Distance from bank (m)	0	2	5	8	12	15	18	21	23	24																																							
Depth (m)	0	0.6	1.2	1.8	2.4	1.9	1.4	1.1	0.5	0																																							
current meter revolutions at 0.6 depth	0	60	90	120	150	140	100	80	50	0																																							
Time (s)	0	150	140	140	160	140	140	140	140	0																																							
		OR																																															
6	a)	Explain the elements of hydrograph with a neat sketch.	<i>CO 1</i>	<i>PO 1</i>	8																																												

	b)	<p>Following are the ordinates of a storm hydrograph of a river draining a catchment area of 423 km^2 due to a 6 hr isolated storm. Derive the ordinates of a 6-hr unit hydrograph for the catchment.</p> <table border="1"> <tr> <td>Time from the start of storm (hr)</td><td>-6</td><td>0</td><td>6</td><td>12</td><td>18</td><td>24</td><td>30</td><td>36</td><td>42</td><td>48</td></tr> <tr> <td>Discharge (m^3/s)</td><td>10</td><td>10</td><td>30</td><td>87.5</td><td>115.5</td><td>102.5</td><td>85</td><td>71</td><td>59</td><td>47.5</td></tr> </table> <table border="1"> <tr> <td>Time from the start of storm (hr)</td><td>54</td><td>60</td><td>66</td><td>72</td><td>78</td><td>84</td><td>90</td><td>96</td><td>102</td></tr> <tr> <td>Discharge (m^3/s)</td><td>39</td><td>31.5</td><td>26</td><td>21.5</td><td>17.5</td><td>15</td><td>12.5</td><td>12</td><td>12</td></tr> </table>	Time from the start of storm (hr)	-6	0	6	12	18	24	30	36	42	48	Discharge (m^3/s)	10	10	30	87.5	115.5	102.5	85	71	59	47.5	Time from the start of storm (hr)	54	60	66	72	78	84	90	96	102	Discharge (m^3/s)	39	31.5	26	21.5	17.5	15	12.5	12	12	<i>CO 1</i>	<i>PO 1</i>	12
Time from the start of storm (hr)	-6	0	6	12	18	24	30	36	42	48																																					
Discharge (m^3/s)	10	10	30	87.5	115.5	102.5	85	71	59	47.5																																					
Time from the start of storm (hr)	54	60	66	72	78	84	90	96	102																																						
Discharge (m^3/s)	39	31.5	26	21.5	17.5	15	12.5	12	12																																						
		UNIT - IV																																													
7	a)	Explain crop seasons in the Indian context. Also, explain any two surface water application methods to the crops with neat sketches.	<i>CO 2</i>	<i>PO 1</i>	10																																										
	b)	An irrigation field 45 m wide and 265 m long has soil of apparent specific gravity 1.56 and field capacity 23%. Depth of the root zone is 0.95 m. Daily consumptive use is 11 mm and irrigation is to be started when 75% of available water is used. <ul style="list-style-type: none"> (i) Determine the depth of irrigation. (ii) Calculate the time required for irrigation, if discharge at the field course is 20 lit/sec. 	<i>CO 2</i>	<i>PO 2</i>	10																																										
		OR																																													
8	a)	Define irrigation and explain its necessity in a tropical country like India. List the advantages and ill-effects of assured irrigation.	<i>CO 2</i>	<i>PO 1</i>	10																																										
	b)	A sandy loam soil holds water at 140 mm/m depth between field capacity and permanent wilting point. The root depth of the crop is 30 cm and the allowable depletion of water is 35%. The daily water use by the crop is 5 mm/day. The area to be irrigated is 60 ha and water can be diverted at 28 litres per second. There are no rainfall and groundwater contribution. Determine <ul style="list-style-type: none"> i) Allowable depletion between the irrigations ii) Frequency of irrigation iii) Net application depth of water iv) Volume of water required and v) Time to irrigate 4 ha plot. 	<i>CO 2</i>	<i>PO 2</i>	10																																										
		UNIT - V																																													
9	a)	Define duty and delta in the context of canal irrigation. Also, elaborate on the factors affecting the duty of irrigation water and explain the methods to improve duty.	<i>CO 2</i>	<i>PO 1</i>	10																																										
	b)	A water course has a culturable command area of 1200 ha. Irrigation intensity for crop A is 40% and for B is 35%, and both are rabi crops. Crop A has Kor depth of 10 cm and Kor period of 20 days. Crop B has Kor depth 16 cm and Kor period 15 days. Calculate the discharge required in the water course to meet the irrigation demand.	<i>CO 2</i>	<i>PO 1</i>	10																																										
		OR																																													

10	a)	Explain different type of alignments of irrigation canals. Elaborate on how the alignment, full supply level and full supply discharge of irrigation canals are fixed while planning the irrigation project.	<i>CO 2</i>	<i>PO 1</i>	10
	b)	The base period, intensity of irrigation, and duty of water for various crops under a canal system are given. Determine the reservoir capacity in million cubic meters, if the culturable command area is 8000 ha, conveyance loss is 14% and reservoir losses are 12%.	<i>CO 2</i>	<i>PO 2</i>	10

Crop	Base Period (days)	Duty (ha /cumecs)	Intensity of irrigation
Wheat	120	1500	35%
Sugarcane	180	1600	15%
Rice	120	900	35%
Maize	90	800	15%
