

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## July 2024 Semester End Main Examinations

**Programme: B.E.**

**Branch: Civil Engineering**

**Course Code: 22CV5PCHIE**

**Course: Hydrology and Irrigation Engineering**

**Semester: V**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

| <b>UNIT - I</b>             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CO</b>   | <b>PO</b>      | <b>Marks</b> |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|-----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------|--------|----------------|-----------------------------|------|---------------|------|-------|------------------------|-------|------|-------|------|--|--|--|
| 1                           | a)          | Using the Engineering's representation, explain the occurrence and movement of water on the Earth.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>CO 1</i> | <i>PO 1</i>    | <b>6</b>     |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             | b)          | A watershed has 5 rain gauge stations. In a year, the annual rainfall recorded by the gauges are as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>CO 1</i> | <i>PO 1</i>    | <b>8</b>     |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             |             | <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Station</td><td>KA01</td><td>KA02</td><td>KA03</td><td>KA04</td><td>KA05</td><td>KA06</td></tr> <tr> <td>Rainfall (cm)</td><td>82.6</td><td>102.9</td><td>180.3</td><td>110.3</td><td>98.8</td><td>136.7</td></tr> </table> <p>(i) Determine the standard error in the estimation of mean rainfall in the existing set of rain gauges.<br/>(ii) For 10% error in estimation of mean rainfall, calculate the optimum number of rain gauge stations in the watershed.</p> | Station     | KA01           | KA02         | KA03   | KA04           | KA05                        | KA06 | Rainfall (cm) | 82.6 | 102.9 | 180.3                  | 110.3 | 98.8 | 136.7 |      |  |  |  |
| Station                     | KA01        | KA02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KA03        | KA04           | KA05         | KA06   |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
| Rainfall (cm)               | 82.6        | 102.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180.3       | 110.3          | 98.8         | 136.7  |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             | c)          | For the rain gauge station Chitradurga, calculate the missing rainfall data K for the month of July'83. Rainfall data for the surrounding three stations Shimoga, Hassan and Chikkamagaluru are available as follows:                                                                                                                                                                                                                                                                                                                              | <i>CO 1</i> | <i>PO 1</i>    | <b>6</b>     |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             |             | <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Year</td><td>Chitradurga</td><td>Shimoga</td><td>Hassan</td><td>Chikkamagaluru</td></tr> <tr> <td>Normal Annual rainfall (cm)</td><td>26.2</td><td>35</td><td>28.7</td><td>30.2</td></tr> <tr> <td>July' 83 Rainfall (cm)</td><td>K</td><td>14.9</td><td>94.9</td><td>13.1</td></tr> </table>                                                                                                                                                                           | Year        | Chitradurga    | Shimoga      | Hassan | Chikkamagaluru | Normal Annual rainfall (cm) | 26.2 | 35            | 28.7 | 30.2  | July' 83 Rainfall (cm) | K     | 14.9 | 94.9  | 13.1 |  |  |  |
| Year                        | Chitradurga | Shimoga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hassan      | Chikkamagaluru |              |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
| Normal Annual rainfall (cm) | 26.2        | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.7        | 30.2           |              |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
| July' 83 Rainfall (cm)      | K           | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.9        | 13.1           |              |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
| <b>OR</b>                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                |              |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
| 2                           | a)          | Discuss various weather systems of precipitation in the Indian context.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>CO 1</i> | <i>PO 1</i>    | <b>5</b>     |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             | b)          | With appropriate example, explain the term return period and its relevance in hydrology.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO 1</i> | <i>PO 1</i>    | <b>5</b>     |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |
|                             | c)          | A catchment area is pentagonal in shape comprising a square ABCD with sides of 16 km and an equilateral triangle ADE. Rain gauges A, B, C, D, and E are positioned at the corners of the catchment, while another gauge, F, is at the center of the square. Over the course of a year, rainfall measurements were recorded as follows: 10 cm at station A, 15 cm at station B, 8 cm at station C, 6 cm at station D, 9 cm at station E, and                                                                                                        | <i>CO 1</i> | <i>PO 2</i>    | <b>10</b>    |        |                |                             |      |               |      |       |                        |       |      |       |      |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|-----------------------------------|------|----|-----|------|----|----|----|----|----|----|-------------------------------------|----|----|----|------|-------|-------|----|----|----|------|-----------------------------------|----|----|----|----|----|----|----|----|-----|-------------------------------------|----|------|----|------|------|----|------|----|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 12 cm at station F. Using the Thiessen polygon method, determine the average rainfall over the entire catchment.                                                                                                                                                                                                                                                                                               |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| <b>UNIT - II</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) | List the factors affecting evapotranspiration.                                                                                                                                                                                                                                                                                                                                                                 | <i>CO 1</i> | <i>PO 1</i> | <b>4</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) | The KRS reservoir in Mysore had an average surface area of $20 \text{ km}^2$ during June 2022. In that month the following data were observed. Mean rate of inflow = $10 \text{ m}^3/\text{s}$ , outflow = $15 \text{ m}^3/\text{s}$ , monthly rainfall = 10 cm and decline in storage = 16 million $\text{m}^3$ . Assuming the seepage losses to be 1.8 cm, estimate the reservoir evaporation in that month. | <i>CO 1</i> | <i>PO 1</i> | <b>6</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) | A storm with 150 mm precipitation produced a direct runoff of 8.7 cm with incremental hourly rainfall values being 0.6, 1.35, 2.25, 3.45, 2.7, 2.4, 1.5 and 0.75 cm/hr. Estimate the $\phi$ -index of the storm.                                                                                                                                                                                               | <i>CO 1</i> | <i>PO 2</i> | <b>10</b> |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) | List the methods available for measuring the stage and discharge in a river. With a neat sketch explain the slope-area method.                                                                                                                                                                                                                                                                                 | <i>CO 1</i> | <i>PO 1</i> | <b>8</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) | During a flood flow, the depth of water in a 10 m wide rectangular channel was found to be 3.0 m and 2.9 m at two sections 200 m apart. The drop in the water-surface elevation was found to be 0.12 m. Assuming Manning's coefficient to be 0.025, estimate the flood discharge through the channel.                                                                                                          | <i>CO 1</i> | <i>PO 2</i> | <b>12</b> |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) | Explain basic assumptions constituting unit hydrograph theory.                                                                                                                                                                                                                                                                                                                                                 | <i>CO 1</i> | <i>PO 1</i> | <b>8</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) | Following are the ordinates of a storm hydrograph of a river draining a catchment area of $423 \text{ km}^2$ due to a 6 hr isolated storm. Derive the ordinates of a 6-hr unit hydrograph for the catchment.                                                                                                                                                                                                   | <i>CO 1</i> | <i>PO 2</i> | <b>12</b> |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">Time from the start of storm (hr)</td> <td>-6</td> <td>0</td> <td>6</td> <td>12</td> <td>18</td> <td>24</td> <td>30</td> <td>36</td> <td>42</td> <td>48</td> </tr> <tr> <td>Discharge (<math>\text{m}^3/\text{s}</math>)</td> <td>10</td> <td>10</td> <td>30</td> <td>87.5</td> <td>115.5</td> <td>102.5</td> <td>85</td> <td>71</td> <td>59</td> <td>47.5</td> </tr> </table><br><table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">Time from the start of storm (hr)</td> <td>54</td> <td>60</td> <td>66</td> <td>72</td> <td>78</td> <td>84</td> <td>90</td> <td>96</td> <td>102</td> </tr> <tr> <td>Discharge (<math>\text{m}^3/\text{s}</math>)</td> <td>39</td> <td>31.5</td> <td>26</td> <td>21.5</td> <td>17.5</td> <td>15</td> <td>12.5</td> <td>12</td> <td>12</td> </tr> </table> |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           | Time from the start of storm (hr) | -6   | 0  | 6   | 12   | 18 | 24 | 30 | 36 | 42 | 48 | Discharge ( $\text{m}^3/\text{s}$ ) | 10 | 10 | 30 | 87.5 | 115.5 | 102.5 | 85 | 71 | 59 | 47.5 | Time from the start of storm (hr) | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | Discharge ( $\text{m}^3/\text{s}$ ) | 39 | 31.5 | 26 | 21.5 | 17.5 | 15 | 12.5 | 12 | 12 |
| Time from the start of storm (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -6 | 0                                                                                                                                                                                                                                                                                                                                                                                                              | 6           | 12          | 18        | 24                                | 30   | 36 | 42  | 48   |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| Discharge ( $\text{m}^3/\text{s}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | 10                                                                                                                                                                                                                                                                                                                                                                                                             | 30          | 87.5        | 115.5     | 102.5                             | 85   | 71 | 59  | 47.5 |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| Time from the start of storm (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54 | 60                                                                                                                                                                                                                                                                                                                                                                                                             | 66          | 72          | 78        | 84                                | 90   | 96 | 102 |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| Discharge ( $\text{m}^3/\text{s}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39 | 31.5                                                                                                                                                                                                                                                                                                                                                                                                           | 26          | 21.5        | 17.5      | 15                                | 12.5 | 12 | 12  |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |           |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) | Explain crop seasons in the Indian context.                                                                                                                                                                                                                                                                                                                                                                    | <i>CO 2</i> | <i>PO 1</i> | <b>4</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) | Explain with neat sketches, any two techniques of water distribution in the farm.                                                                                                                                                                                                                                                                                                                              | <i>CO 2</i> | <i>PO 1</i> | <b>8</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) | Determine the field capacity of a soil for the given data:<br>Depth of root zone = 1.8 m, existing moisture = 8 %, dry density of the soil = $1450 \text{ kg/m}^3$ , quantity of water applied to the soil = $650 \text{ m}^3$ , water loss due to the deep percolation and evaporation = 10%, and area to be irrigated = $1000 \text{ m}^2$ .                                                                 | <i>CO 2</i> | <i>PO 1</i> | <b>8</b>  |                                   |      |    |     |      |    |    |    |    |    |    |                                     |    |    |    |      |       |       |    |    |    |      |                                   |    |    |    |    |    |    |    |    |     |                                     |    |      |    |      |      |    |      |    |    |

| <b>UNIT - V</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |           |
|-----------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|
| 7               | a) | Explain the following terms (i) Kor water depth (ii) paleo irrigation (iii) time factor (iv) field capacity and (v) duty of irrigation water.                                                                                                                                                                                                                                                                                      | <i>CO 2</i> | <i>PO 1</i> | <b>10</b> |
|                 | b) | Gross command area for a distributary is 20000 ha, 75% of which can be irrigated. The intensity of irrigation for rabi season is 40% and that for kharif season is 10%. Kor period is 4 weeks for the rabi crop and 2.5 weeks for the kharif crop. Outlet factors for the rabi and kharif crops may be assumed as 1800 ha/ cumec and 775 ha/ cumec, respectively. Determine (i) the outlet discharge and (ii) delta for each crop. | <i>CO 2</i> | <i>PO 2</i> | <b>10</b> |

\*\*\*\*\*

REAPPEAR EXAMS 2023-24