

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22CV6PCBFS

Max Marks: 100

Course: Bridge Engineering and Foundation Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS 2911, 456-2000, IRC 6, IRC 21 and Piguards curves allowed

			UNIT – I		
			CO	PO	Marks
1	a)	Compare temporary and permanent bridges	CO 1	PO1	4
	b)	Discuss the factors to be considered while selecting suitable site for a bridge construction?	CO 1	PO1	8
	c)	Design a waterway for a bridge across a stream, having flood discharge of $25 \text{ m}^3/\text{sec}$, over a trapezoidal channel, having side slope of 1:1 with a bed falls of 1:800 and a bed width to depth ratio of 6: 1. The bed material is sand with a safe velocity of 2.5 m /sec. The afflux should not be more than 60mm. Take Manning's coefficient N = 0.025.	CO 1	PO3	8
UNIT – II					
2		Design the simply supported deck slab of a culvert for the following data. Clear road width: 7.5 m Kerb width: 0.6 m Effective span: 6.0 m Loading: IRC Class AA tracked vehicle Dispersion factor: 3.0 Total dead load udl: 11.36 KN/m^2 Adopt M20 concrete and Fe415 steel. Sketch the details of reinforcement. Assume overall depth of the slab as 400mm.	CO 1	PO3	20
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

3	a)	Design the intermediate longitudinal girder of a T beam and slab bridge for the following data: Effective span of girders = 16 m Clear width of road way = 7.5m Width of Kerb on either side = 600mm Average thickness of wearing coat = 80 mm Number of longitudinal girders = 3 Spacing of longitudinal girders = 2.5 m Spacing of cross girders = 4m Loading = IRC Class AA tracked vehicle Adopt M30 concrete and Fe 415 grade steel. Shear check is not required. Also sketch the reinforcement details.	CO 1	PO3	20
		UNIT - III			
4	a)	Find the uplift capacity of the pile for the following details $\text{Dia}=0.4\text{m}$, $L=20\text{m}$, $\gamma_{\text{sat}}=19.5\text{kN/m}^3$, $\gamma_b=18\text{kN/m}^3$, $\gamma_{\text{concrete}}=24\text{kN/m}^3$, $\phi=38^\circ$, $D_c=15\text{B}$, $K=2.3$, $\delta=0.75\phi$, water table is 2m from the ground level.	CO2	PO2	10
	b)	A square pile group of 16 piles penetrates through a filled up soil of 3m depth. The pile diameter is 40cm and pile spacing is 0.75m. The unit cohesion of the material is 18kN/m^2 and the unit weight of soil is 15kN/m^3 . Compute the negative skin friction of the group.	CO2	PO2	10
		OR			
5	a)	A 12m long concrete pile 40cm diameter is driven into dense sand having average void ratio of 0.6. The GWT is at a depth of 4m below the ground level. Water content above GWT is 15%. If $\phi=35^\circ$, $N_q=41.4$, $N_g=42.4$, $K=2$, $\delta=0.75\phi$, $D_c=15\text{B}$. Estimate the safe load.	CO2	PO2	10
	b)	Briefly explain pile integrity test	CO2	PO1	5
	c)	Briefly explain negative skin friction in piles.	CO2	PO1	5
		UNIT - IV			
6	a)	Explain briefly the non dimensional approach for vertical piles subjected to lateral loads based on Reese and Matlock theory.	CO2	PO1	10
	b)	Determine the deflection t ground surface ($Z=0$) for the pile width $d=0.4\text{m}$, $L=10\text{m}$, $H=50\text{kN}$ (applied at the ground surface), $EI=37 \times 10^3\text{kN-m}^2$, $\eta_b=5000\text{kN/m}^2/\text{m}$. Water table is at the ground level. Refer table 1.	CO2	PO2	10
		UNIT - V			
7	a)	Explain the rectifying methods for shifting and tilting problems	CO2	PO1	14
	b)	Explain the forces acting on a well foundation	CO2	PO1	6

Table 1 (For Q 6b) Non dimensional coefficients for laterally loaded pile (Reese and Matlock)

Z	A_y	A_s	A_m	A_v	A_p
0.0	2.435	- 1.623	0.000	1.000	0.000
0.1	2.273	- 1.618	0.100	0.989	- 0.227
0.2	2.112	- 1.603	0.198	0.956	- 0.422
0.3	1.952	- 1.578	0.291	0.906	- 0.586
0.4	1.796	- 1.545	0.379	0.840	- 0.718
0.5	1.644	- 1.503	0.459	0.764	- 0.822
0.6	1.496	- 1.454	0.532	0.677	- 0.897
0.7	1.353	- 1.397	0.595	0.585	- 0.947
0.8	1.216	- 1.335	0.649	0.489	- 0.973
0.9	1.086	- 1.268	0.693	0.392	- 0.977
1.0	0.962	- 1.197	0.727	0.295	- 0.962
1.2	0.738	- 1.047	0.767	0.109	- 0.885
1.4	0.544	- 0.893	0.772	- 0.056	- 0.761
1.6	0.381	- 0.741	0.746	- 0.193	- 0.609
1.8	0.247	- 0.596	0.696	- 0.298	- 0.445
2.0	0.142	- 0.464	0.628	- 0.371	- 0.283
3.0	- 0.075	- 0.040	0.225	- 0.349	0.226
4.0	- 0.050	0.052	0.000	- 0.106	0.201
5.0	- 0.009	0.025	- 0.033	0.013	0.046

Z	B_y	B_s	B_m	B_v	B_p
0.0	1.623	- 1.750	1.000	0.000	0.000
0.1	1.453	- 1.650	1.000	- 0.007	- 0.145
0.2	1.293	- 1.550	0.999	- 0.028	- 0.259
0.3	1.143	- 1.450	0.994	- 0.058	- 0.343
0.4	1.003	- 1.351	0.987	- 0.095	- 0.401
0.5	0.873	- 1.253	0.976	- 0.137	- 0.436
0.6	0.752	- 1.156	0.960	- 0.181	- 0.451
0.7	0.642	- 1.061	0.939	- 0.226	- 0.449
0.8	0.540	- 0.968	0.914	- 0.270	- 0.432
0.9	0.448	- 0.878	0.885	- 0.312	- 0.403
1.0	0.364	- 0.792	0.852	- 0.350	- 0.364
1.2	0.223	- 0.629	0.775	- 0.414	- 0.268
1.4	0.112	- 0.482	0.688	- 0.456	- 0.157
1.6	0.029	- 0.354	0.594	- 0.477	- 0.047
1.8	-0.030	- 0.245	0.498	- 0.476	- 0.054
2.0	-0.070	- 0.155	0.404	- 0.456	- 0.140
3.0	-0.089	0.057	0.059	- 0.213	0.268
4.0	-0.028	0.049	-0.042	0.017	0.112
5.0	-0.000	0.011	-0.026	0.029	- 0.002
