

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: VI**

**Branch: Civil Engineering**

**Duration: 3 hrs.**

**Course Code: 22CV6PCBFS**

**Max Marks: 100**

**Course: Bridge Engineering and Foundation Systems**

**Instructions:**

1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of IS 2911, 456-2000, IRC 6, IRC 21 and Piguards curves allowed

| <b>UNIT – I</b>                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         | <b>CO</b>                                                                                                              | <b>PO</b>   | <b>Marks</b> |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | a)                                                                      | Briefly explain with a neat sketch the components of a bridge                                                          | <b>CO 1</b> | <b>PO1</b>   | <b>5</b>  |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         | b)                                                                      | Briefly explain the different methods of determining the design discharge and economical span in design of bridges     | <b>CO 1</b> | <b>PO1</b>   | <b>7</b>  |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         | c)                                                                      | Briefly Explain: (i) linear waterway (ii) scour depth & aflux (iii) Railway loads on bridges (iv) IRC loads on bridges | <b>CO 1</b> | <b>PO1</b>   | <b>8</b>  |
| <b>OR</b>                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                        |             |              |           |
| 2                                                                                                                                                                                                     | a)                                                                                                                                                                                                                                                                                                                                                                                                                      | Briefly explain the salient features for selecting an ideal bridge site | <b>CO1</b>                                                                                                             | <b>PO2</b>  | <b>10</b>    |           |
|                                                                                                                                                                                                       | b)                                                                                                                                                                                                                                                                                                                                                                                                                      | Briefly explain how bridges are classified.                             | <b>CO1</b>                                                                                                             | <b>PO2</b>  | <b>10</b>    |           |
| <b>UNIT – II</b>                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                        |             |              |           |
| 3                                                                                                                                                                                                     | Design a slab culvert for the following details:<br>Width of bridge: 7.5m<br>Thickness of parapet: 0.5m<br>Thickness of wearing coat: 75mm<br>No footpath is to be provided<br>Conditions of exposure: 'moderate'<br>Materials adopted: Concrete grade-M25 and Fe500 grade steel<br>Clear span: 6.3m<br>Height of vent: 3m<br>Consider IRC class AA wheeled loading only as per IRC6 - 2017 for live load in this case. |                                                                         |                                                                                                                        | <b>CO 1</b> | <b>PO3</b>   | <b>20</b> |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>OR</b>                                                               |                                                                                                                        |             |              |           |

|           | 4                                        | <p>Design the intermediate longitudinal girder of a T beam and slab bridge for the following data:</p> <p>Effective span of girders = 16 m</p> <p>Clear width of road way = 7.5m</p> <p>Width of Kerb on either side = 600mm</p> <p>Average thickness of wearing coat = 80 mm</p> <p>Number of longitudinal girders = 3</p> <p>Spacing of longitudinal girders = 2.5 m</p> <p>Spacing of cross girders = 4m</p> <p>Loading = IRC Class AA tracked vehicle</p> <p>Adopt M30 concrete and Fe 415 grade steel. Shear check is not required. Also sketch the reinforcement details.</p>                                                                                                         | <i>CO 1</i>     | <i>PO3</i>                               | <b>20</b>                          |                 |          |      |    |     |           |      |    |     |  |  |  |
|-----------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------------------------|-----------------|----------|------|----|-----|-----------|------|----|-----|--|--|--|
|           |                                          | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
| 5         | a)                                       | Indicate the circumstances under which the pile foundations are used for building construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>CO 2</i>     | <i>PO1</i>                               | <b>4</b>                           |                 |          |      |    |     |           |      |    |     |  |  |  |
|           | b)                                       | Briefly explain negative skin friction of piles and how to determine it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>CO 2</i>     | <i>PO1</i>                               | <b>6</b>                           |                 |          |      |    |     |           |      |    |     |  |  |  |
|           | c)                                       | <p>A 350 mm x 350 mm reinforced concrete pile 20 m long is driven through loose material and then into dense gravel to a final set of 3 mm/blow, using a 30 kN single –acting hammer with a stroke of 1.5 m. Determine the ultimate driving resistance of the pile if it is fitted with a helmet, plastic dolly and 50 mm packing on the top of the pile. The weight of the helmet and dolly is 5 kN. The other details are:</p> <p>Weight of pile = 740kN; Weight of hammer = 30 kN;</p> <p>pile hammer efficiency <math>\eta_h = 0.85</math>; the coefficient of restitution <math>e = 0.38</math>; Sum of the elastic compression of the pile cap, pile material and soil is 19.6 mm</p> | <i>CO 2</i>     | <i>PO2</i>                               | <b>10</b>                          |                 |          |      |    |     |           |      |    |     |  |  |  |
|           |                                          | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
| 6         | a)                                       | Explain how the pile load capacity is determined by using static formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>CO 2</i>     | <i>PO1</i>                               | <b>8</b>                           |                 |          |      |    |     |           |      |    |     |  |  |  |
|           | b)                                       | Using static formulae estimate the pile length required to carry a load of 250 kN in a layered soil system. Take pile diameter as 300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>CO 2</i>     | <i>PO2</i>                               | <b>12</b>                          |                 |          |      |    |     |           |      |    |     |  |  |  |
|           |                                          | <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Depth (m)</th> <th>Unit weight of soil (kN/m<sup>3</sup>)</th> <th>Unit cohesion (kN/m<sup>2</sup>)</th> <th>Adhesion factor</th> </tr> </thead> <tbody> <tr> <td>0 to - 6</td> <td>18.0</td> <td>40</td> <td>0.9</td> </tr> <tr> <td>-6 to -20</td> <td>19.0</td> <td>60</td> <td>0.7</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                      | Depth (m)       | Unit weight of soil (kN/m <sup>3</sup> ) | Unit cohesion (kN/m <sup>2</sup> ) | Adhesion factor | 0 to - 6 | 18.0 | 40 | 0.9 | -6 to -20 | 19.0 | 60 | 0.7 |  |  |  |
| Depth (m) | Unit weight of soil (kN/m <sup>3</sup> ) | Unit cohesion (kN/m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adhesion factor |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
| 0 to - 6  | 18.0                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9             |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
| -6 to -20 | 19.0                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7             |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
|           |                                          | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                          |                                    |                 |          |      |    |     |           |      |    |     |  |  |  |
| 7         | a)                                       | List the situations under which the structure will be subject to lateral loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>CO 2</i>     | <i>PO1</i>                               | <b>4</b>                           |                 |          |      |    |     |           |      |    |     |  |  |  |
|           | b)                                       | A concrete pile 0.4 m x 0.4 m and 8 m long is subjected to a horizontal load of 12 kN and moment of 6 kN-m at the ground level. Taking $k' = 2.1 \times 10^4$ kN/m <sup>3</sup> and $E = 3 \times 10^7$ kN/m <sup>2</sup> , find the maximum B.M and deflection considering the pile head is free. Use Reese and Matlock method. (Refer Table A for coefficients)                                                                                                                                                                                                                                                                                                                           | <i>CO 2</i>     | <i>PO2</i>                               | <b>10</b>                          |                 |          |      |    |     |           |      |    |     |  |  |  |

|    |    |                                                                                                                                                                                                                                                                                                                                                                 |      |     |    |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|
|    | c) | Explain briefly the non-dimensional approach for vertical piles subjected to lateral loads based on Reese and Matlock theory.                                                                                                                                                                                                                                   | CO 2 | POI | 6  |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                       |      |     |    |
| 8  | a) | A concrete pile 30cm square and 5m long is subjected to a horizontal load of 5000N and a moment of 4000N-m at the ground level. Taking $\gamma = 20 \times 10^3 \text{ kN/m}^3$ , find the maximum bending moment and deflection if<br>I. The head of the pile is considered to be free<br>The head is considered fixed with no external moment. Refer table 1. | CO 2 | PO2 | 10 |
|    | b) | Determine the deflection at ground surface (Z=0) for the pile width $d=0.4\text{m}$ , $L=10\text{m}$ , $H=50\text{kN}$ (applied at the ground surface), $EI=37 \times 10^3 \text{ kN-m}^2$ , $\eta_b=5000\text{kN/m}^2/\text{m}$ . Water table is at the ground level. Refer table 1.                                                                           | CO 2 | PO2 | 10 |
|    |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                 |      |     |    |
| 9  | a) | List and explain with a neat figure the components of a well foundation?                                                                                                                                                                                                                                                                                        | CO 1 | POI | 6  |
|    | b) | With neat sketches explain the various methods of rectifying tilt in well foundations.                                                                                                                                                                                                                                                                          | CO 2 | POI | 8  |
|    | c) | What is grip length as applied to well foundation? How is the grip length calculated?                                                                                                                                                                                                                                                                           | CO 2 | POI | 6  |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                       |      |     |    |
| 10 | a) | Explain the different shapes and characteristics of wells                                                                                                                                                                                                                                                                                                       | CO 2 | POI | 6  |
|    | b) | Explain the forces acting on well foundation                                                                                                                                                                                                                                                                                                                    | CO 2 | POI | 6  |
|    | c) | Explain the process of sinking of wells                                                                                                                                                                                                                                                                                                                         | CO 2 | POI | 8  |

Table A: Non-dimensional coefficients for laterally loaded pile (Reese and Matlock)

| Z   | $A_y$  | $A_s$  | $A_m$  | $A_v$  | $A_p$  |
|-----|--------|--------|--------|--------|--------|
| 0.0 | 2.435  | -1.623 | 0.000  | 1.000  | 0.000  |
| 0.1 | 2.273  | -1.618 | 0.100  | 0.989  | -0.227 |
| 0.2 | 2.112  | -1.603 | 0.198  | 0.956  | -0.422 |
| 0.3 | 1.952  | -1.578 | 0.291  | 0.906  | -0.586 |
| 0.4 | 1.796  | -1.545 | 0.379  | 0.840  | -0.718 |
| 0.5 | 1.644  | -1.503 | 0.459  | 0.764  | -0.822 |
| 0.6 | 1.496  | -1.454 | 0.532  | 0.677  | -0.897 |
| 0.7 | 1.353  | -1.397 | 0.595  | 0.585  | -0.947 |
| 0.8 | 1.216  | -1.335 | 0.649  | 0.489  | -0.973 |
| 0.9 | 1.086  | -1.268 | 0.693  | 0.392  | -0.977 |
| 1.0 | 0.962  | -1.197 | 0.727  | 0.295  | -0.962 |
| 1.2 | 0.738  | -1.047 | 0.767  | 0.109  | -0.885 |
| 1.4 | 0.544  | -0.893 | 0.772  | -0.056 | -0.761 |
| 1.6 | 0.381  | -0.741 | 0.746  | -0.193 | -0.609 |
| 1.8 | 0.247  | -0.596 | 0.696  | -0.298 | -0.445 |
| 2.0 | 0.142  | -0.464 | 0.628  | -0.371 | -0.283 |
| 3.0 | -0.075 | -0.040 | 0.225  | -0.349 | 0.226  |
| 4.0 | -0.050 | 0.052  | 0.000  | -0.106 | 0.201  |
| 5.0 | -0.009 | 0.025  | -0.033 | 0.013  | 0.046  |

| Z   | B <sub>y</sub> | B <sub>s</sub> | B <sub>m</sub> | B <sub>v</sub> | B <sub>p</sub> |
|-----|----------------|----------------|----------------|----------------|----------------|
| 0.0 | 1.623          | - 1.750        | 1.000          | 0.000          | 0.000          |
| 0.1 | 1.453          | - 1.650        | 1.000          | -0.007         | - 0.145        |
| 0.2 | 1.293          | - 1.550        | 0.999          | -0.028         | - 0.259        |
| 0.3 | 1.143          | - 1.450        | 0.994          | -0.058         | - 0.343        |
| 0.4 | 1.003          | - 1.351        | 0.987          | -0.095         | - 0.401        |
| 0.5 | 0.873          | -1.253         | 0.976          | -0.137         | -0.436         |
| 0.6 | 0.752          | -1.156         | 0.960          | -0.181         | -0.451         |
| 0.7 | 0.62           | -1.061         | 0.939          | -0.226         | -0.449         |
| 0.8 | 0.540          | -0.968         | 0.914          | -0.270         | -0.432         |
| 0.9 | 0.448          | -0.878         | 0.885          | -0.312         | -0.403         |
| 1.0 | 0.364          | -0.792         | 0.852          | -0.350         | -0.364         |
| 1.2 | 0.223          | -0.629         | 0.775          | -0.414         | -0.268         |
| 1.4 | 0.112          | -0.482         | 0.688          | -0.456         | -0.157         |
| 1.6 | 0.029          | -0.354         | 0.594          | -0.477         | -0.047         |
| 1.8 | -0.030         | -0.245         | 0.498          | -0.476         | -0.054         |
| 2.0 | -0.070         | -0.155         | 0.404          | -0.456         | -0.140         |
| 3.0 | -0.089         | 0.057          | 0.059          | -0.213         | 0.268          |
| 4.0 | -0.028         | 0.049          | -0.042         | 0.017          | 0.112          |
| 5.0 | -0.000         | 0.011          | -0.026         | 0.029          | -0.002         |