

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV6PCBFS

Max Marks: 100

Course: Bridge Engineering and Foundation Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IRC-6, IRC-21, IS: 456-2000, IS 2911, Piguard's curves permitted.

			UNIT - I								CO	PO	Marks																
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define Bridge. Briefly explain the components of a bridge with a neat sketch.								CO1	PO1	10																
		b)	A T – beam and slab bridge needs to be provided across a river having the following data:								CO1	PO2	10																
			<table border="1" data-bbox="330 1096 1156 1291"> <tr> <td>Distance (meters)</td><td>0</td><td>11.28</td><td>24.4</td><td>52.4</td><td>68.3</td><td>80.5</td><td>85.3</td></tr> <tr> <td>R.L (meters)</td><td>10.97</td><td>9.75</td><td>4.27</td><td>2.44</td><td>5.49</td><td>10.36</td><td>10.67</td></tr> </table> <p>HFL = 9.15 m, Manning's co-efficient N = 0.03, Maximum allowable velocity under the bridge = 1.2 times natural velocity, slope of river bed 1/1650. Calculate the span of the bridge.</p>								Distance (meters)	0	11.28	24.4	52.4	68.3	80.5	85.3	R.L (meters)	10.97	9.75	4.27	2.44	5.49	10.36	10.67			
Distance (meters)	0	11.28	24.4	52.4	68.3	80.5	85.3																						
R.L (meters)	10.97	9.75	4.27	2.44	5.49	10.36	10.67																						
			OR																										
	2	a)	Outline and explain the factors which govern the selection of an ideal site of a railway bridge over an alluvial river.								CO1	PO1	10																
		b)	<p>The following data refers to a bridge site at which it is proposed to construct an R.C. slab bridge.</p> <p>Flood discharge = 30 cumecs</p> <p>Side slopes of valley = 1:1</p> <p>Bed fall at site 1 in 2500</p> <p>Ratio of bed width to depth = 8:1</p> <p>Maximum afflux allowed = 75 mm</p> <p>Bed material is gravel with roughness coefficient = 0.025</p> <p>Safe velocity for no scour = 2.5 m/sec</p> <p>Design a suitable waterway.</p>								CO1	PO2	10																

UNIT - II					
3		Obtain Courbon's reaction factor and the maximum bending moment in case of a T-beam bridge having following details: Roadways: 2 lanes Loading: IRC Class A No. of main girders: 3, c/c spacing = 2.6 m Span of bridge = 16 m Kerb width: 600 mm on either side	<i>CO1</i>	<i>PO3</i>	20
		OR			
4		Design an intermediate panel of deck slab of a RCC T-beam - slab type bridge for a National highway to suit the following data using Pigeaud's Curve: Effective span of T-beam = 14.0m Clear width of roadway = 7.5m; Kerbs: 600mm wide x 300mm (depth) either side. Thickness of plain cement concrete wearing coat = 100 mm. Three longitudinal girders at 3 m c/c Cross girders at 3.5 m c/c. Width of longitudinal and cross girders = 300 mm Use M30 grade concrete and Fe 415 grade steel.	<i>CO1</i>	<i>PO3</i>	20
UNIT - III					
5	a)	Describe briefly the following with a neat sketch: a) Rocker and Roller Bearing b) Elastomeric Bearing	<i>CO1</i>	<i>PO1</i>	10
	b)	Design a reinforced concrete rocker bearing to transmit a support reaction of 600 kN. Adopt M30 grade concrete & Fe 415 grade HYSD steel bars. Permissible bearing stress is 8 N/mm ²	<i>CO1</i>	<i>PO3</i>	10
		OR			
6	a)	Describe the different types of bridge pier with a neat sketch.	<i>CO1</i>	<i>PO1</i>	10
	b)	Design a mild steel rocker bearing for transmitting the superstructure reactive load of 1200 kN. Allowable pressure on bearing block = 3.8 MPa Permissible bending stress: 0.66 f _y = 165 MPa Permissible bearing stress = 100 MPa Permissible shear stress = 100 MPa	<i>CO1</i>	<i>PO3</i>	10
UNIT - IV					
7	a)	Find the uplift capacity of the pile	<i>CO2</i>	<i>PO2</i>	10

		Given: dia=0.4m, Length=20m, $\gamma_{sat}=19.5\text{kN/m}^3$, $\gamma_b=18\text{kN/m}^3$, $\gamma_w=10\text{kN/m}^3$, $\gamma_{concrete}=24\text{kN/m}^3$, $\phi=38^\circ$, Critical Depth=14.5B, $K=2.3$, $\delta=\phi$, water table is 2m from the ground surface				
	b)	A RCC pile is proposed in a clay soil with a UCC strength of 120kN/m^2 and $\gamma = 18\text{kN/m}^3$. If the diameter of the pile is 40cm. Find the length of the pile required to carry a load of 600kN.	CO2	PO2	10	
		OR				
	8	a)	A 10m long concrete pile 30cm diameter is driven into a dense sand having $\phi = 30$ degree, $\gamma = 18\text{kN/m}^3$, $K=1.5$, $\phi =\delta$. Find the safe load if $D_c=10\text{B}$, $N_q=22.5$ and $N_g=19.7$	CO2	PO2	10
		b)	A square pile group of 165 piles penetrates through a filled-up soil of 3m depth. The pile diameter is 250mm and pile spacing is 0.75m. The unit cohesion of the material is 18kN/m^2 and the unit weight of the soil is 15kN/m^3 . Compute the negative skin friction on the group.	CO2	PO2	10
			UNIT - V			
	9	a)	Explain the rectifying methods for shifting and tilting problems	CO2	PO1	12
		b)	Explain the parts of a well foundation with a neat sketch	CO2	PO1	8
			OR			
	10	a)	Explain the different shapes that can be casted for a well foundation.	CO2	PO1	5
		b)	Explain the process of sinking of wells	CO2	PO1	10
		c)	Explain the advantages of a well foundation	CO2	PO1	5
