

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PCDSS

Course: Design of Steel Structural Elements & Software

Applications Lab

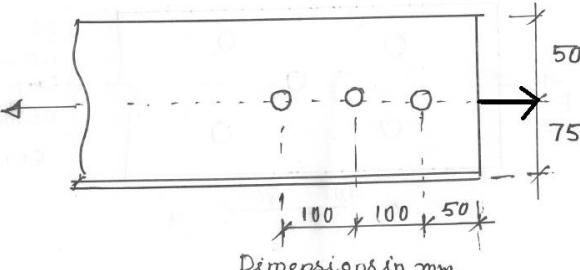
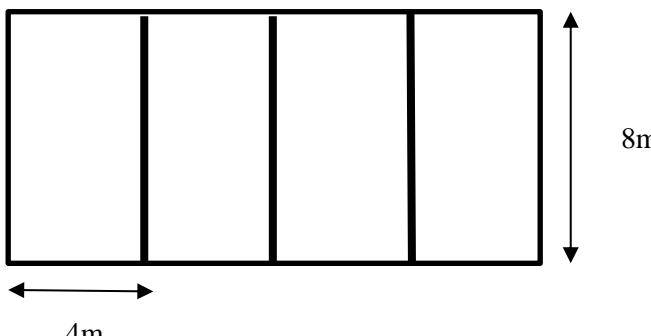
Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 12.07.2023

Instructions: Answer 5 full questions choosing one from each unit.



Missing data may be assumed appropriately and mentioned

Use of IS 800-2007, SP 6(1) handbook/ Steel tables are permitted

Grade of steel in all cases may be assumed as Fe410

UNIT - I			CO	PO	Marks
1	a)	List out the benefits and limitations of steel structures	<i>CO1</i>	<i>PO1</i>	08
	b)	Write a detailed note on the various loads mentioned in IS-800-2007 for design of structural steel elements	<i>CO1</i>	<i>PO1</i>	08
	c)	Write a brief note on partial safety factors considered for design as per IS-800-2007 for materials	<i>CO1</i>	<i>PO1</i>	04
UNIT - II					
2	a)	With neat sketches, elucidate the different modes of failure that occur in bolted connections	<i>CO1</i>	<i>PO1</i>	05
	b)	Design a bolted connection between the flange of a column ISHB 450 @ 907 N/m and a bracket plate 15mm thickness. The bracket plate is perpendicular to the flange of the column and is supporting a load of 150kN at an eccentricity of 350mm from the flange of the column. Use 20# HSFG bolts of property class 8.8	<i>CO2</i>	<i>PO3</i>	15
OR					
3	a)	Compare the advantages and drawbacks of welded connections used in steel structures	<i>CO1</i>	<i>PO1</i>	06
	b)	A diagonal member of a truss ISA 65x65x6mm is welded in the field to a gusset plate of 8mm thickness. Design the joint for full strength of angle, <ol style="list-style-type: none"> If fillet weld is provided along length of member If fillet weld is provided along the length and side of the angle. 	<i>CO2</i>	<i>PO3</i>	14
UNIT - III					
4	a)	The tension member shown in Fig Q4(a) is an angle section 100x75x8 mm. Determine the block shear strength. Bolts are of	<i>CO1</i>	<i>PO1</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		20 mm diameter and grade 4.6. Gusset plate thickness may be taken as 10 mm.			
		<p>Dimensions in mm</p>			
		Fig Q4(a)			
	b)	A tension member consists of single ISA100x100x10@10.8 kg/m connected to 12 mm gusset plate. If 3 numbers of 20 mm diameter bolts of class 4.6 are used, determine the design tensile strength of the given section	CO3	PO3	12
		UNIT - IV			
5	a)	Design a discontinuous strut comprising of 2 unequal angles back to back on opposite sides of gusset 12 mm thick. The angles are connected by their longer legs. The length of the member is 3.5 m between c/c of intersections. The strut is required to support a factored load of 180 kN.	CO1	PO1	08
	b)	A Column 5m long is to support a factored load of 5500kN. If the ends at the column are effectively held in position and direction at both ends. Design the Column. Use additional plates if required	CO3	PO3	12
		OR			
6		Design a built-up laced column carrying a factored load of 1800 kN. The length of column is 8 m. It is effectively held in position at both ends and restrained against rotation at one end. Assume 20 mm diameter bearing bolts of grade 4.6.	CO3	PO3	20
		UNIT - V			
7		Steel beam with flanges embedded in concrete slab have simply supported span of 8 m. The c/c spacing of beam is 4 m. It carries RCC Slab of 140 mm thickness. The super-imposed load is 4 kN/m ² and floor finish of 1.5 kN/m ² . Take $f_y = 250\text{MPa}$. Design the section of an interior beam. Refer Fig Q7. Apply suitable checks recommended for beams as per IS800-2007	CO3	PO3	20

Fig Q 7
