

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PCIWR

Course: Irrigation and Water Resources

Semester: VI

Duration: 3 hrs.

Max Marks: 100

- Instructions:**
1. Answer 5 full questions choosing one full question from units 2 and 5.
 2. Assume missing data suitably.
 3. Draw neat sketches wherever necessary.
 4. Additional normal graph sheets may be supplied.

			UNIT - I					CO	PO	Marks																																			
1	a)	List the practical applications of hydrology in engineering.					CO1	PO1	5																																				
	b)	A watershed has a network of five rain gauges. Annual rainfall recorded by these gauges in the year 2020 are given. Calculate the optimum number of rain gauges for this watershed for a 10% error in estimation of mean areal rainfall.					CO1	PO1	7																																				
	c)	For a semiarid watershed in the North Karnataka, the recorded annual precipitation for the years 1996 to 2000 are given. Find the missing rainfall data at station A for the year 1996.					CO1	PO1	8																																				
			<table border="1"> <thead> <tr> <th colspan="5">Mean annual precipitation (mm)</th> </tr> <tr> <th>Year</th> <th>Station A</th> <th>Station B</th> <th>Station C</th> <th>Station D</th> </tr> </thead> <tbody> <tr> <td>1996</td> <td>-</td> <td>576</td> <td>630</td> <td>442</td> </tr> <tr> <td>1997</td> <td>1210</td> <td>1083</td> <td>1009</td> <td>951</td> </tr> <tr> <td>1998</td> <td>950</td> <td>753</td> <td>905</td> <td>604</td> </tr> <tr> <td>1999</td> <td>690</td> <td>675</td> <td>586</td> <td>623</td> </tr> <tr> <td>2000</td> <td>860</td> <td>557</td> <td>697</td> <td>803</td> </tr> </tbody> </table>								Mean annual precipitation (mm)					Year	Station A	Station B	Station C	Station D	1996	-	576	630	442	1997	1210	1083	1009	951	1998	950	753	905	604	1999	690	675	586	623	2000	860	557	697	803
Mean annual precipitation (mm)																																													
Year	Station A	Station B	Station C	Station D																																									
1996	-	576	630	442																																									
1997	1210	1083	1009	951																																									
1998	950	753	905	604																																									
1999	690	675	586	623																																									
2000	860	557	697	803																																									
			UNIT - II																																										
2	a)	Define infiltration capacity. Explain the factors affecting infiltration capacity. Also, with a neat sketch, explain the procedure of finding the infiltration capacity using the double ring infiltrometer.					CO2	PO1	10																																				
	b)	The following are the ordinates of the hydrograph of flow from a catchment area of 770 km^2 due to a 6 hr rainfall. Derive the ordinates of the 6 hr unit hydrograph. Assume a constant base flow of $40 \text{ m}^3/\text{s}$.					CO2	PO2	10																																				
		<table border="1"> <tr> <td>Time from the beginning of the storm (hr.)</td> <td>0</td> <td>6</td> <td>12</td> <td>18</td> <td>24</td> <td>30</td> <td>36</td> <td>42</td> <td>48</td> <td>54</td> <td>60</td> <td>66</td> <td>72</td> </tr> <tr> <td>Discharge (m^3/s)</td> <td>40</td> <td>65</td> <td>215</td> <td>360</td> <td>400</td> <td>350</td> <td>270</td> <td>205</td> <td>145</td> <td>100</td> <td>70</td> <td>50</td> <td>40</td> </tr> </table>								Time from the beginning of the storm (hr.)	0	6	12	18	24	30	36	42	48	54	60	66	72	Discharge (m^3/s)	40	65	215	360	400	350	270	205	145	100	70	50	40								
Time from the beginning of the storm (hr.)	0	6	12	18	24	30	36	42	48	54	60	66	72																																
Discharge (m^3/s)	40	65	215	360	400	350	270	205	145	100	70	50	40																																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR																																								
3	a)	A 12 hr storm rainfall occurring over a basin has the following depth in cm for each hour. The surface runoff resulting from the above storm is found to be 24.4 cm. determine the Φ index for the basin.										CO2	PO2	10																												
		<table border="1"> <tr><td>Time (hr.)</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td></tr> <tr><td>Rainfall (cm)</td><td>1.8</td><td>2.6</td><td>7.8</td><td>3.9</td><td>10.6</td><td>5.4</td><td>7.8</td><td>9.2</td><td>6.5</td><td>4.4</td><td>1.8</td><td>1.6</td></tr> </table>															Time (hr.)	1	2	3	4	5	6	7	8	9	10	11	12	Rainfall (cm)	1.8	2.6	7.8	3.9	10.6	5.4	7.8	9.2	6.5	4.4	1.8	1.6
Time (hr.)	1	2	3	4	5	6	7	8	9	10	11	12																														
Rainfall (cm)	1.8	2.6	7.8	3.9	10.6	5.4	7.8	9.2	6.5	4.4	1.8	1.6																														
	b)	A pan evaporimeter is setup near a lake in Bangalore and the following observations are recorded for the 7 days of a week.										CO2	PO1	10																												
		<table border="1"> <tr><td>Day</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr> <tr><td>Rainfall (cm)</td><td>0</td><td>1.6</td><td>0.3</td><td>0</td><td>0.1</td><td>0</td><td>1.6</td></tr> <tr><td>Water added to the pan (cm)</td><td>0.6</td><td>-1.4</td><td>0.2</td><td>0.7</td><td>0.3</td><td>0.6</td><td>-1.4</td></tr> </table> <p>i) Determine the daily evaporation and the total pan evaporation during the week ii) Assuming a pan coefficient of 0.7, determine the lake evaporation during the week. Surface area of the lake is 1.2 ha.</p>															Day	1	2	3	4	5	6	7	Rainfall (cm)	0	1.6	0.3	0	0.1	0	1.6	Water added to the pan (cm)	0.6	-1.4	0.2	0.7	0.3	0.6	-1.4		
Day	1	2	3	4	5	6	7																																			
Rainfall (cm)	0	1.6	0.3	0	0.1	0	1.6																																			
Water added to the pan (cm)	0.6	-1.4	0.2	0.7	0.3	0.6	-1.4																																			
		UNIT - III																																								
4	a)	Explain what is meant by stream gauging and list the various methods available for stream gauging. With a neat sketch, explain the area-velocity method of stream gauging.										CO3	PO1	10																												
	b)	During a high flow, water-surface elevation of a small stream were noted at two sections A and B, 10 km apart. These elevations and other salient hydraulic properties are given. Ignoring the eddy losses, estimate the discharge in the stream.										CO3	PO1	10																												
		<table border="1"> <tr><td>Section</td><td>Water-surface elevation (m)</td><td>Area of cross-section (m²)</td><td>Hydraulic radius (m)</td><td>Remarks</td></tr> <tr><td>A</td><td>104.771</td><td>73.293</td><td>2.733</td><td rowspan="2">A is upstream of B n = 0.020</td></tr> <tr><td>B</td><td>104.500</td><td>93.375</td><td>3.089</td></tr> </table>														Section	Water-surface elevation (m)	Area of cross-section (m ²)	Hydraulic radius (m)	Remarks	A	104.771	73.293	2.733	A is upstream of B n = 0.020	B	104.500	93.375	3.089													
Section	Water-surface elevation (m)	Area of cross-section (m ²)	Hydraulic radius (m)	Remarks																																						
A	104.771	73.293	2.733	A is upstream of B n = 0.020																																						
B	104.500	93.375	3.089																																							
		UNIT - IV																																								
5	a)	Discuss the benefits and ill effects of irrigation.										CO4	PO1	5																												
	b)	With a neat sketch explain the various storage zones in a reservoir and the corresponding water levels.										CO4	PO1	7																												
	c)	Discuss sprinkler irrigation method, mentioning the method of water application, conditions favoring the adoption of this method and the advantages of the method.										CO4	PO1	8																												
		UNIT - V																																								
6	a)	Define Duty and discuss the methods to improve the Duty.										CO5	PO1	5																												
	b)	The gross command area for a distributary is 6000 ha, 80% of which is culturable irrigable. The intensity of irrigation for Rabi season is 50% and that for Kharif season is 25 %. If the average duty at the head of the distributary is 2000 ha/cumec for Rabi season and 900 ha/cumec for Kharif season, calculate the										CO5	PO1	7																												

		discharge required at the head of the distributary from average demand considerations.																											
	c)	<p>Wheat is to be grown in a field having a field capacity 31% and permanent wilting point 15 %.</p> <p>i) Calculate the storage capacity in 80 cm depth of soil, if the dry unit weight of the soil is 14 kN/m³.</p> <p>ii) If the irrigation is to be supplied when the average soil moisture falls to 20%, estimate the water depth required to be supplied to the field.</p> <p>iii) Also, determine the water needed at the canal inlet if the water lost in the water-course and the field channels is 15% of the discharge at the canal inlet.</p>	CO5	PO2	8																								
		OR																											
7	a)	Define the terms gross command area, culturable command area intensity of irrigation, paleo irrigation, and Kor-watering.	CO5	PO1	5																								
	b)	Discuss various efficiencies generally considered for irrigation water.	CO5	PO1	7																								
	c)	<p>A canal takes off a reservoir to irrigate the areas as given. 40% of the water required for irrigation is assumed to be available directly from precipitation. Channel conveyance losses are 15%. Reservoir losses are 10%. Estimate the storage capacity of the reservoir needed, assuming that the reservoir is filled only once a year.</p> <table border="1"> <thead> <tr> <th>Crop</th> <th>Base period (days)</th> <th>Duty at the field (ha/cumec)</th> <th>Area under the crop (ha)</th> </tr> </thead> <tbody> <tr> <td>Wheat</td> <td>120</td> <td>1800</td> <td>500</td> </tr> <tr> <td>Sugarcane</td> <td>320</td> <td>800</td> <td>600</td> </tr> <tr> <td>Rice</td> <td>120</td> <td>900</td> <td>300</td> </tr> <tr> <td>Cotton</td> <td>200</td> <td>1400</td> <td>1200</td> </tr> <tr> <td>Bajra</td> <td>100</td> <td>1200</td> <td>500</td> </tr> </tbody> </table>	Crop	Base period (days)	Duty at the field (ha/cumec)	Area under the crop (ha)	Wheat	120	1800	500	Sugarcane	320	800	600	Rice	120	900	300	Cotton	200	1400	1200	Bajra	100	1200	500	CO5	PO2	8
Crop	Base period (days)	Duty at the field (ha/cumec)	Area under the crop (ha)																										
Wheat	120	1800	500																										
Sugarcane	320	800	600																										
Rice	120	900	300																										
Cotton	200	1400	1200																										
Bajra	100	1200	500																										
