

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 20CV6OEMFC

Course: Mechanics of FRP composites

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: Answer any **Five** full questions out of **six** questions.

			CO	PO	Marks											
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Briefly explain FRP composites and its constituents. Write the merits and demerits of composite materials over conventional material.	CO1	PO1	10											
	b) How does the orientation and arrangement of fibers in a FRP Composite affect its mechanical properties? What are the different types of fiber reinforcement used in FRP composites?	CO1	PO1	10												
2	a) Derive an expression for Young's modulus of laminae along its longitudinal and lateral directions. Also state the assumptions made in deriving these properties.	CO1	PO1	10												
	b) Determine the longitudinal elastic modulus, ultimate tensile strength and major as well as minor Poisson's ratios for a glass/epoxy lamina with a 70% fiber volume fraction by using the data given below.	CO2	PO2	10												
	<table border="1"> <thead> <tr> <th>Property</th> <th>Glass</th> <th>Epoxy</th> </tr> </thead> <tbody> <tr> <td>Young's Modulus</td> <td>85 GPa</td> <td>3.4 GPa</td> </tr> <tr> <td>(σ)Ult</td> <td>1550 MPa</td> <td>72 MPa</td> </tr> <tr> <td>ν</td> <td>0.2</td> <td>0.3</td> </tr> </tbody> </table>	Property	Glass	Epoxy	Young's Modulus	85 GPa	3.4 GPa	(σ)Ult	1550 MPa	72 MPa	ν	0.2	0.3			
Property	Glass	Epoxy														
Young's Modulus	85 GPa	3.4 GPa														
(σ)Ult	1550 MPa	72 MPa														
ν	0.2	0.3														
3	a) Find the following for a 60° angle lamina of graphite/epoxy, if applied stresses are $\sigma_x = 2$ MPa, $\sigma_y = -3$ MPa, $\tau_{xy} = 4$ MPa. <ul style="list-style-type: none"> i. Transformed reduced stiffness matrix $[\bar{Q}]$ ii. Global strains iii. Local strains iv. Local stresses Use the properties of unidirectional graphite/epoxy lamina as, longitudinal elastic modulus is 181 GPa, Transverse elastic modulus is 10.3 GPa, Major Poisson's ratio is 0.28, shear modulus 7.17 GPa.	CO2	PO2	12												

	b)	Derive the transformed reduced stiffness matrix for a lamina with arbitrary orientation (derivation of transformation matrix (T) is not required).	CO2	PO2	08
4		A four layered anti-symmetric graphite/epoxy laminate has (0/90/45/-45) scheme, each of 1mm thickness. Given $E_1 = 181$ GPa, $E_2 = 10.3$ GPa, $\nu_{12} = 0.28$ and $G_{12} = 7.17$ GPa for the material combination of lamina, compute the [A], [B], and [D] matrices.	CO3	PO2	20
5		Establish the Force and Moment Resultants Related to Midplane Strains and curvatures (ABD Matrix) from the basic principles.	CO3	PO2	20
6	a)	A 30° fibre oriented lamina is subjected to the stresses, $\sigma_x = 12$ MPa, $\sigma_y = 30$ MPa and $\tau_{xy} = 3.5$ MPa. Check for safety of the lamina by maximum stress theory and Tsai-Hill failure theory by considering the following ultimate permissible stresses, $X_T = 250$ MPa, $Y_T = 0.5$ MPa, $X_C = 200$ MPa, and $Y_C = 10$ MPa and $S = 8$ MPa.	CO3	PO2	10
	b)	What are the different failure theories and explain them with the relations.	CO1	PO1	10
