

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 22CV6OEMFC

Max Marks: 100

Course: Mechanics of FRP Composites

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Classify the composites based on reinforcement and matrix materials. Sketch and give an example for the classified material.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Determine the weight and volume fractions of glass fiber and epoxy. Also find the density of the composite, using the following data: Density of glass fiber: 3.11 g/cm^3 Density of epoxy: 2.3 g/cm^3 Weight of composite (w_c): 3.56 gms Weight of fiber (w_f): 2.12 gms	<i>CO 1</i>	<i>PO1</i>	10
UNIT – II					
2	a)	Using rule of mixtures, obtain an expression for ν_{12} (poisson's ratio) and ultimate tensile strength of a unidirectional lamina with a suitable sketch.	<i>CO 1</i>	<i>PO1</i>	08
	b)	Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina with a 70% fiber volume fraction. The Young's modulus of the fiber is $E_f = 85 \text{ GPa}$, the Young's modulus of the matrix is $E_m = 3.4 \text{ GPa}$. Also, find the ratio of the load taken by the fibers to that of the composite.	<i>CO 2</i>	<i>PO1</i>	04
	c)	A graphite/epoxy lamina has $E_1 = 181 \text{ GPa}$, $E_2 = 10.3 \text{ GPa}$, $\nu_{12} = 0.28$, and $G_{12} = 7.17 \text{ GPa}$. Find the compliance matrix for the lamina. If this lamina is to be used as 60° angle-ply with strains limited to $\varepsilon_x = 55 \times 10^{-6}$, $\varepsilon_y = -310 \times 10^{-6}$ and $\gamma_{xy} = 530 \times 10^{-6}$, what are the maximum values of global stresses that can be applied?	<i>CO 2</i>	<i>PO1</i>	08
UNIT - III					
3	a)	Find the Compliance matrix for an orthotropic graphite/epoxy lamina. The material properties are given as $E_1 = 181 \text{ GPa}$, $E_2 = 10.3 \text{ GPa}$, $E_3 = 10.3 \text{ GPa}$, $\nu_{12} = 0.28$, $\nu_{23} = 0.60$, $\nu_{13} = 0.27$, $G_{12} = 7.17 \text{ GPa}$, $G_{23} = 3.0 \text{ GPa}$, $G_{31} = 7.00 \text{ GPa}$.	<i>CO 2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain the concepts of plane stress and plane strain conditions, and derive the engineering elastic constants of a two dimensional lamina under an orthotropic conditions [Q].	CO 2	POI	10
		OR			
4	a)	For an angle lamina, show that $[R].[T].[R]^{-1} = [R]^{-T}$	CO 2	POI	06
	b)	A 45° angle lamina of graphite/epoxy has $E_1 = 181$ GPa, $E_2 = 10.3$ GPa, $v_{12} = 0.28$ and $G_{12} = 7.17$ GPa. Find the following: Transformed reduced stiffness matrix ($[\bar{Q}]$) and Transformed compliance matrix ($[\bar{S}]$)	CO 2	POI	10
	c)	Mention the assumptions made in the Classical Laminate Theory.			04
		UNIT – IV			
5	a)	Write the schematic representation of code given below i) $[0/-45_2/90/60_2]$, ii) $[0/-45]_{2s}$ iii) $[0/-45/60]_s$	CO 2	POI	06
	b)	Compute the in-plane [A] and coupled stiffness matrices [B] and [D] for a three-ply $[0/90/0]$ graphite/epoxy laminate having each lamina of thickness 5 mm. Use properties, $E_1 = 181$ GPa, $E_2 = 10.3$ GPa, $v_{12} = 0.28$, and $G_{12} = 7.17$ GPa for the materials.	CO 2	POI	10
	c)	What is a laminate stacking sequence? Explain with an example.	CO 1	POI	04
		OR			
6		Starting with stress-strain relationship for a unidirectional lamina, derive the A, B and D matrices for an n-ply laminate.	CO 2	POI	20
		UNIT – V			
7	a)	State maximum stress failure criterion and maximum strain failure criterion as applied to composite material. Express the governing equations for the same.	CO 2	POI	10
	b)	State and determine all the components of Tsai–Hill and Tsai–Wu Failure theories.	CO 2	POI	10
