

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 22CV6OEMFC

Max Marks: 100

Course: MECHANICS OF FRP COMPOSITES

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a.	Define composite materials and discuss in detail the classification and properties of different composite types by highlighting their engineering significance.			<i>CO1</i>	<i>PO1</i>	10
		b.	Compare Laminated, Hybrid, and Sandwich Composites with respect to their structural configuration and material composition. Additionally, state two key advantages associated with each type.			<i>CO1</i>	<i>PO1</i>	10
	OR							
	2	a.	Distinguish between micromechanics and macromechanics of composites. Also, state the basic assumptions made while estimating E_{11} and E_{22} using the Rule of Mixtures.			<i>CO1</i>	<i>PO1</i>	10
		b.	Explain the influence of fiber orientation and arrangement on the mechanical behavior of FRP composites. Also, discuss the different types of fiber reinforcements employed in FRP systems.			<i>CO1</i>	<i>PO1</i>	10
	UNIT - II							
	3	a.	Evaluate the expressions for longitudinal and transverse Young's moduli of a composite material, highlighting the underlying assumptions used in the derivation.			<i>CO2</i>	<i>PO2</i>	14
		b.	Find the longitudinal elastic modulus and in-plane shear modulus of a glass/epoxy lamina with a 70% fiber volume fraction. The Young's modulus of the fiber is $E_f = 85$ GPa, the Young's modulus of the matrix is $E_m = 3.4$ GPa. Poisson's ratios of matrix and fiber are 0.3 and 0.2 respectively.			<i>CO2</i>	<i>PO2</i>	06
	OR							
	4		Develop the theoretical expressions for the in-plane shear modulus and the ultimate tensile strength of a unidirectional composite lamina. Further, calculate the longitudinal elastic modulus, ultimate tensile strength, and the major and minor			<i>CO2</i>	<i>PO2</i>	20

		Poisson's ratios for a glass/epoxy composite lamina with 70% fiber volume fraction, using the data given below.															
		<table border="1"> <thead> <tr> <th>Property</th><th>Glass</th><th>Epoxy</th></tr> </thead> <tbody> <tr> <td>Young's Modulus</td><td>85 GPa</td><td>3.4 GPa</td></tr> <tr> <td>(σ)Ult</td><td>1550 MPa</td><td>72 MPa</td></tr> <tr> <td>v</td><td>0.2</td><td>0.3</td></tr> </tbody> </table>	Property	Glass	Epoxy	Young's Modulus	85 GPa	3.4 GPa	(σ)Ult	1550 MPa	72 MPa	v	0.2	0.3			
Property	Glass	Epoxy															
Young's Modulus	85 GPa	3.4 GPa															
(σ)Ult	1550 MPa	72 MPa															
v	0.2	0.3															
		UNIT - III															
5.		Define plane stress and plane strain conditions in the context of material behavior. Derive the constitutive stress-strain relations for an orthotropic material subjected to plane stress. Additionally, list the number of independent elastic constants associated with 3D Anisotropic, Monoclinic, Orthotropic, Transversely Isotropic, and Isotropic material symmetries.	<i>CO2</i>	<i>PO2</i>	20												
		OR															
6	a.	For a 60° angle lamina of graphite/epoxy, obtain the transformed reduced stiffness matrix ($[\bar{Q}]$) if $E_1 = 181$ GPa, $E_2 = 10.3$ GPa, $v_{12} = 0.28$ and $G_{12} = 7.17$ GPa. Also find Global strains, Local strains and Local stresses, if applied stresses are $\sigma_x = 2$ MPa, $\sigma_y = -3$ MPa, $\tau_{xy} = 4$ MPa.	<i>CO2</i>	<i>PO2</i>	12												
	b.	Derive the transformed reduced stiffness matrix for a lamina with arbitrary orientation (derivation of transformation matrix (T) is not required).	<i>CO2</i>	<i>PO2</i>	8												
		UNIT - IV															
7		Considering that the strain distribution in a laminate depends on mid-plane strains and curvatures, derive the expressions for the extensional stiffness matrix [A], coupling stiffness matrix [B], and bending stiffness matrix [D] for a general n -ply composite laminate.	<i>CO2</i>	<i>PO2</i>	20												
		OR															
8		Find the three stiffness matrices [A], [B], and [D] for a three-ply [0/30/-45] graphite/epoxy laminate as shown in Figure. Use the properties of unidirectional graphite/epoxy lamina as given below.	<i>CO2</i>	<i>PO2</i>	20												
		$[Q] = \begin{bmatrix} 181.8 & 2.897 & 0 \\ 2.897 & 10.35 & 0 \\ 0 & 0 & 7.17 \end{bmatrix} (10^3) \text{ MPa}$															

			UNIT - V			
	9	a.	Enumerate the various failure theories applicable to composite materials and explain them with their corresponding mathematical formulation.	<i>CO2</i>	<i>PO2</i>	10
		b.	Explain with examples (i) Laminate code (ii) Balanced laminates (iii) Hybrid laminates (iv) Symmetric and anti-symmetric laminates (v) Cross-ply and angle-ply laminates.	<i>CO2</i>	<i>PO2</i>	10
			OR			
	10	a.	A 30° fibre oriented lamina is subjected to the stresses, $\sigma_x = 12\text{MPa}$, $\sigma_y = 30\text{MPa}$ and $\tau_{xy} = 3.5\text{MPa}$. Check for safety of the lamina by maximum stress theory and Tsai-Hill failure theory by considering the following ultimate permissible stresses, $X_T = 250\text{MPa}$, $Y_T = 0.5\text{MPa}$, $X_C = 200\text{MPa}$, and $Y_C = 10\text{MPa}$ and $S = 8\text{MPa}$.	<i>CO2</i>	<i>PO2</i>	10
		b.	What are the different failure theories used in the analysis of composite materials? Describe each theory in detail, including the relevant mathematical expressions or failure criteria.	<i>CO2</i>	<i>PO2</i>	10

B.M.S.C.E. - EVEN SEMESTER - 2014-25