

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

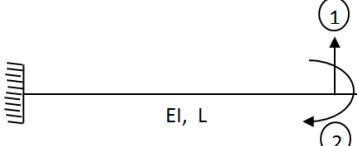
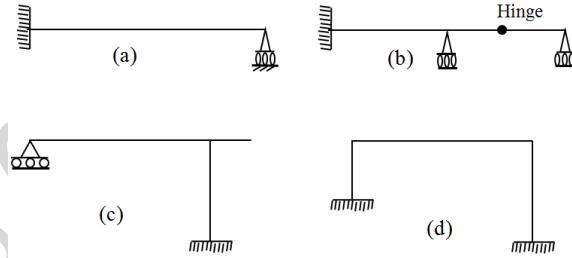
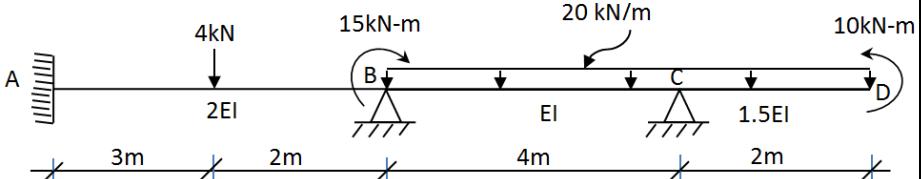
July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PEMMA

Course: Matrix Method of Structural Analysis




Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: Answer any **five** full questions out of **six** questions.

			CO	PO	Marks
1	a)	Define: (i) Static and kinematic Indeterminacy (ii) Stiffness and flexibility (iii) Degree of Redundancy (iv) Degrees of freedom	CO1	PO1	08
	b)	Derive the stiffness matrix of the beam element shown in the Fig.1 with respect to the given co-ordinates.	CO1	PO1	04
	c)	<p>Fig. 1</p> <p>Determine the degree of static and kinematic indeterminacy of the structures shown in Fig. 2.</p> <p>Fig. 2</p>	CO1	PO1	08
2		Analyse the continuous beam shown in Fig.3, by stiffness Method (element approach). End A is fixed and ends B & C are hinged. Draw the bending moment diagram and elastic curve.	CO2	PO2	20
		<p>Fig.3</p>			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

3	Analyse and sketch bending moment diagram and elastic curve for the beam shown in Fig. 4, by flexibility method (element approach).	CO2	PO2	20
	<p>Fig.4</p>			
4	Analyze the continuous beam shown in Fig. 5 by Direct stiffness method and determine all the member end moments. Draw BMD and elastic curve.	CO3	PO2	20
	<p>Fig. 5</p>			
5	Analyze the portal frame shown in Fig. 6, by Direct stiffness method. Draw Bending moment and elastic curve diagram.	CO3	PO2	20
	<p>Fig. 6</p>			
6	Compute the displacements at node 'O' of the plane truss shown in Fig. 7 by forming stiffness matrix using displacement transformation matrix. Calculate also the axial forces in all members of the truss.	CO3	PO2	20
	<p>Fig. 7</p>			
