

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PEPAD

Course: PAVEMENT DESIGN

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IRC-37:2018 and IRC-58: 2015 is permitted

UNIT - I			CO	PO	Marks
1	a)	Elaborate on the functions of different pavement layers. Comment on how pavement layers help to minimize wheel load stresses at the interface between sub-base layer and subgrade soil.	CO1	PO1	10
	b)	Calculate the vertical stress beneath a circular imprint at a depth of 375 mm (or 37.5 cm) for the following conditions. i. Gross load on tyre = 20000 kg ii. Tyre pressure = 0.7 MPa (7 kg/cm^2) Also determine the elastic deformation if the subgrade has a modulus of deformation of 0.5MPa (5.6 kg/cm^2) and the thickness of pavement is 400 mm.	CO1	PO1	10
UNIT - II					
2	a)	List and explain the traffic parameters required for estimating design traffic volume as per IRC – 37 2018 flexible pavement design guidelines.	CO1	PO1	10
	b)	Determine the total thickness of flexible pavement assuming single layer elastic theory and using the following data:- Design wheel load = 4200 kg; Tyre pressure = 0.6 MPa (6 kg/cm^2); Elastic modulus = 15 MPa (150 kg/cm^2); Permissible deflection = 2.5 mm.	CO2	PO3	10
UNIT - III					
3	a)	With a neat sketch explain ‘Plate load test’ to determine the modulus of subgrade reaction of soils.	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Soil subgrade sample collected from the site was analyzed and the results obtained are as given below:</p> <ol style="list-style-type: none"> Soil portion passing 0.074 mm sieve = 50 percent Liquid limit = 40 percent Plastic Limit = 20 percent <p>Calculate the 'Group Index' for the above data .</p>	CO1	PO1	10
		OR			
4	a)	Enumerate the steps involved in the design of pavements as per 'AASHTO Guidelines'.	CO2	PO3	10
	b)	<p>Design the pavement for construction of a new bypass with the following data:</p> <ol style="list-style-type: none"> Two lane carriage way Initial traffic in the year of completion of construction = 400 CVPD (sum of both directions) Traffic growth rate = 7.5 % Design life = 15 years Vehicle damage factor based on axle load survey = 2.5 standard axle per commercial vehicle Design CBR of subgrade soil = 4%. 	CO2	PO3	10
		UNIT – IV			
5	a)	Explain the steps involved in the design of concrete pavements as per IRC-58: 2015 guidelines.	CO2	PO3	10
	b)	Calculate the stresses at interior, edge and corner regions of a cement concrete pavement using Westergaard's stress equations for the data given below: Wheel load = 4475 kg; Modulus of elasticity of cement concrete = 0.3×10^5 MPa (3×10^5 kg/cm 2); Pavement thickness = 170 mm (or 17 cm); Poisson's ratio of concrete = 0.15; Modulus of subgrade reaction = 0.637 MPa (6.5 kg/cm 2); Radius of contact area = 150 mm.	CO3	PO2	10
		UNIT – V			
6	a)	With a neat plan sketch explain different types of joints in concrete pavements.	CO2	PO2	10
	b)	A cement concrete pavement has a thickness of 18 cm and has two lanes of 7.2 m with a longitudinal joint along the center. Design the dimensions and spacing of the tie bar for the following data: - Allowable working stress in tension, $S_S = 137.4$ MPa (1400 kg/cm 2); Unit weight of concrete, $W = 24\text{kN/m}^3$ (or 2400 kg/m 3); Coeff. of friction $f = 1.5$;	CO2	PO3	10
		OR			
7	a)	Write short notes on <ol style="list-style-type: none"> White topping CRCP 	CO1	PO1	10
	b)	Determine the spacing between contraction joints for 3.5m wide slab having thickness of 20 cm and coefficient of friction 1.5 for the following two cases: - <ol style="list-style-type: none"> For plain cement concrete, allowable stress $S_c = 0.08$ MPa (0.8 kg/cm2) For reinforcement cement concrete, 10 mm diameter bars at 0.3 m spacing. 	CO2	PO3	10
