

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PEPAD

Course: Pavement Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Discuss briefly the functions of each layer in flexible pavement with a neat sketch.	07
	b) Discuss the factors influencing design of pavement.	07
	c) A Tandem wheel load assembly has 5100 kg load on each wheel with tyre pressure of 7 kg/cm ² . The clear spacing between the dual wheels is 22 cm and centre to centre spacing between tandem axles is 100 cm. Determine the ESWL at a depth of 80 cm.	06

UNIT - II

2	a) List the assumptions and limitations of Boussinesq's theory.	06
	b) Determine the thickness of pavement by single layer elastic theory so as to limit the deflection on Subgrade to 5 mm due to <ul style="list-style-type: none"> i) Wheel load of 50 KN and contact pressure of 0.7 N/mm² due to truck loading. ii) Wheel load of 5 KN and contact pressure of 5 N/mm² due to bullock cart loading. Assume $E_{subgrade}=10$ N/mm ² .	08
	c) Discuss briefly on Frost action and measures to overcome frost action.	06

UNIT - III

3	a) Design a highway pavement using McLeod method for a wheel load of 6000 kg with a tyre pressure of 6 kg/cm ² . The plate load test conducted on subgrade soil using 30 cm diameter plate yielded pressure of 2.8 kg/cm ² after 10 load repetitions at 0.5 cm deflection.	10
	b) The plate bearing tests were conducted with 30 cm plate diameter on soil Subgrade and over 15 cm base course. The pressures yielded at 0.5 cm deflection are 1.15 kg/cm ² and 4 kg/cm ² respectively. Design the pavement section for 4100 kg wheel load with tyre pressure of 5 kg/cm ² for an allowable deflection of 0.5 cm using Burmister's approach.	10

OR

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

4 a) Design a flexible pavement by CBR method based on IRC:37-2001 recommendations using the following data:- 08

- i) Pavement: 2 lane vi) Design life: 15 years
- ii) Traffic volume: 900 CVPD vii) VDF: 2.5
- iii) Road Construction Period: 3 years viii) Subgrade CBR: 6%
- iv) Rate of growth of Traffic: 8%
- v) Lane Distribution factor: 0.75

b) Discuss briefly on Empirical and semi-empirical methods. 04

c) Discuss the steps involved in design of pavement thickness by Group index method. 08

UNIT - IV

5 a) Discuss briefly about warping stress developed in CC pavements. 05

b) Determine the wheel load stresses at interior, edge and corner region of CC pavement using Westergaard stress equations from the following data: Wheel load= 5100 kg, Radius of contact area=15 cm, $K=6 \text{ kg/cm}^3$, $E=3 \times 10^5 \text{ kg/cm}^2$, Poisson's ratio=0.15, slab thickness=20 cm. 07

c) Determine the warping stress at interior, edge and corner region in a 25 cm thick concrete pavement with transverse joints at 11m interval and longitudinal joints at 3.6 m interval. The modulus of subgrade reaction is 6.9 kg/cm^3 . Assuming temperature differential for day condition to be $0.6^\circ\text{C}/\text{cm}$ slab thickness, radius of contact area= 15 cm, co-efficient of thermal expansion= $10 \times 10^{-6}/^\circ\text{C}$, modulus of elasticity of concrete= $3 \times 10^5 \text{ kg/cm}^2$ and poisson's ratio=0.15. 08

UNIT - V

6 a) Enumerate the design steps of rigid pavement thickness as per IRC-58-2015. 08

b) Write short notes on i) Conventional white topping 06
 ii) Thin white topping
 iii) Ultra thin white topping

c) Check the adequacy of dowel bar system for a concrete pavement using the following data: Slab thickness=33 cm, Joint width = 2 cm, Radius of Relative stiffness=103.53 cm, Design wheel load=8000 kg, Percentage of load transfer=40%, Grade of concrete to be used = M40, Diameter of dowel bar= 32mm, Spacing of dowel=32cm, Modulus of dowel/concrete interaction= $41500 \text{ kg/cm}^2/\text{cm}$, E for steel= $2 \times 10^6 \text{ kg/cm}^2$. 06

OR

7 a) Design the tie bars for Concrete pavement using the following data: Lane width=3.5 m, slab thickness=20 cm, Co efficient of friction=1.5, Density of concrete= 2400 kg/m^3 , Allowable tensile stress in deformed bars= 2000 kg/cm^2 , Allowable tensile stress in plain bars= 1250 kg/cm^2 , Allowable bond stress for plain tie bars= 17.5 kg/cm^2 , Allowable bond stress for deformed bars= 24.6 kg/cm^2 , Diameter of tie bar=12 mm, Give design details separately for deformed bars and plain tie bars. 10

b) Write short notes on i) Continuously reinforced concrete pavement (CRCP) 10
 ii) Steel Fibre reinforced concrete pavement (SFRC)
 iii) Interlocking concrete block pavement (ICBP)
