

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PESMA

Course: Structural Masonry

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of **IS: 1905-1987** is permitted
 4. Use illustrative sketch when necessary to substantiate the answers

UNIT - I

1 a) Describe clay brick, concrete block and soil cement block with regard to their strength resistant to atmospheric agents and modulus. **10**

b) Describe straight cement sand mortar and composite mortar with reference to their properties. State their advantages and disadvantages. **10**

UNIT - II

2 a) Describe the failure of masonry subjected to compression, dynamic load and lateral thrust. How can each be avoided? **10**

b) Explain the factors which influence the compressive strength of masonry. **06**

c) Describe platen effect in the compression test of masonry block. **04**

UNIT - III

3 a) Explain briefly the laboratory procedure to obtain the brick mortar bond strength with an illustrative sketch. Evaluate the bond strength of a triplet test assuming a failure load of 3kN and the brick mortar contact area to be 90mm x 180 mm. **10**

b) Explain the behavior of masonry under compression with a neat sketch. **06**

c) Explain the effect of thickness of block and thickness of mortar on the strength of masonry. **04**

UNIT - IV

4 a) Describe the necessity of providing reinforcement to masonry. Illustrate three types of providing reinforcement in masonry. **10**

b) Describe with a neat sketch, the nature of stresses developed in a masonry dome. Describe the collapse of a masonry dome. **06**

c) Describe the load transfer phenomenon in a masonry arch. **04**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V

5 a) Explain the importance of slenderness ratio, area modification factor and basic compressive strength in the design of masonry. **06**

b) Design a long wall of a room of internal dimensions 6m x 4m. The longer wall has a cantilever slab extension of 1.5m. Consider 3m clear height between floors and 4 storeys. Assume density of masonry = 20 kN/m³ and that of RCC = 25 kN/m³. Thickness of RCC slab = 125mm, live load and floor finish for all floors = 2 kN/m² and 1 kN/m². **14**

OR

6 a) Explain the governing design criteria for a eccentrically loaded masonry wall. What steps should be adopted to avoid failure. **06**

b) Design a free standing wall of length and height 4m each with a thickness of 230mm. It is provided with cross walls of thickness 230mm and width 460mm. Assume wind speed = 33 m/s and constants K1, K2 and K3 = 1 and density of masonry = 20 kN/m³. **14**
