

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 20CV6PESMA

Max Marks: 100

Course: Structural Masonry

Instructions:

1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of IS 1905 is permitted

			UNIT - I			CO	PO	Marks
1	a)	Explain the classification of brick and list the desirable qualities of good brick				CO1	PO1	10
	b)	List and explain the constituents of good brick earth				CO1	PO1	10
OR								
2	a)	Compare the technical characteristics of brick masonry and block masonry				CO1	PO1	10
	b)	Engineered Masonry can be a viable alternative for low to moderate height buildings in the Indian context"? Support this statement with suitable reasoning and illustrations/examples				CO1	PO1	10
UNIT - II								
3	a)	Describe the various factors that govern the compressive strength of masonry?				CO1	PO1	10
	b)	Differentiate between wall, prism and Wallette? How is compressive strength of masonry evaluated experimentally?				CO1	PO1	10
OR								
4	a)	List and explain the different types of walls mentioned in IS 1905 with neat sketches				CO1	PO1	08
	b)	What are the various parameters w.r.t workmanship which can affect the strength of masonry				CO1	PO1	12
UNIT - III								
5	a)	Enumerate and explain the different factors affecting the bond strength of masonry				CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain in detail the procedure for determining shear strength of masonry using diagonal tension test	CO2	PO1	10
		OR			
6	a)	Explain bond wrench test used for evaluating flexural bond strength of masonry	CO2	PO1	10
	b)	Describe couplet and triplet test in detail with the help of sketch	CO2	PO1	10
		UNIT - IV			
7	a)	Compare the technical characteristics of reinforced masonry and plain masonry	CO2	PO1	08
	b)	Explain with sketches the different modes of introducing reinforcement in masonry	CO2	PO1	12
		OR			
8	a)	Discuss the box action of masonry subjected to lateral loading such as earthquake	CO2	PO1	10
	b)	Explain the following <ul style="list-style-type: none"> i) Containment reinforcement in masonry ii) Confined Masonry 	CO2	PO1	10
		OR			
9	a)	Explain the following <ul style="list-style-type: none"> i) Effective height , effective length and effective thickness of walls ii) Stress reduction and Area Reduction Factor iii) Increase in permissible stresses of masonry due to lateral loads 	CO2	PO1	10
	b)	A solid wall of 230 mm thickness is constructed with clay bricks of unit strength of 8 MPa and H2 type mortar. The floor to floor height is 3.25 m. The load is acting axially on the wall. Compute the permissible compressive stress in masonry. If an $e/t = 0.25$, what would be the change in permissible compressive stress.	CO2	PO1	10
		OR			
10		Design an interior cross wall of a two storeyed building with 125mm thick R.C slab and 3100mm ceiling height. The wall is unstiffened and it supports 2600mm wide slab on either side. Take imposed load on roof and floor = $1.5 \text{ kN}/\text{m}^2$ and $2.0 \text{ kN}/\text{m}^2$. Assume load to Floor finish = $0.8 \text{ kN}/\text{m}^2$ and thickness of Weather proof course = 100mm.	CO2	PO3	20
