

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PESWM

Course: Solid Waste Management

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a)	Explain the following terms: 06
		(i) Solid waste (ii) Hazardous waste (iii) Garbage chutes.
	b)	With the help of flow diagram, explain the six functional elements associated with solid waste management system. 06
	c)	Estimate the energy content of a solid waste sample, with the following data. What is the energy content on a dry basis and on the ash free basis? Assume the moisture content as 20% and ash content as 5% (based on 100kg sample) 08

Components	Food waste	Paper	Card board	Plastics	Garden trimmings	wood	Tin cans
% by mass	15	45	10	10	10	05	05
EnergykJ/kg	4,650	16,750	16,300	32,600	6,500	18,600	700

OR

2	a)	Explain the various factors responsible for generation of solid waste. 06
	b)	Distinguish between hauled and stationary container collection system with a neat sketch. 06
	c)	An area consisting of 800 homes contributes solid waste. Estimate the unit waste generation, if the observation location is a local transfer station and period of generation is 1 week. The waste is carried in two types of vehicles namely Compactor trucks and Flat bed trucks whose volumes are 15 m^3 and 1.15m^3 respectively. If the density of material in these trucks are 300kg/m^3 and 100kg/m^3 for Compactor and Flat bed trucks respectively. Assume 6 persons per home, 10 compactor loads and 25 Flat bed truck loads in a week. 08

UNIT - II

3	a)	Explain the various factors to be considered in the selection of site for a sanitary land fill. 06
---	----	---

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Explain briefly mechanical volume reduction and mechanical size reduction of solid waste. **06**

c) Enumerate different collection services, with their merits and demerits. Determine the landfill area required for a municipality with a population of 50000 for the following data

- (i) Solid waste generation =450g/p/d;
- (ii) Compacted density of landfill=604Kg/cum;
- (iii) Average depth of compacted landfill=3m.

UNIT - III

4 a) Discuss the factors influencing anaerobic composting process with their desirable values. **06**

b) With neat sketches, explain Indore process and Bangalore process of composting of municipal solid waste. **06**

c) Determine the amount and volume of air required to oxidize completely one ton of waste having the chemical equation $C_{50}H_{100}O_{40}N$. Assume air contains 23.15% of oxygen by weight and density of air as 1.2928kg/m^3 . **08**

UNIT - IV

5 a) Explain the term landfill leachate. Discuss the factors affecting operation and control of land fill leachate in a land fill scenario. **06**

b) Explain the control of movements of gases in a sanitary landfill by vents and barrier system. **06**

c) With neat sketches, explain the area method and trench method of land filling techniques along with relative merits and demerits of each method. **08**

UNIT - V

6 a) What are the applications of Double layer model in SWM? **06**

b) Elaborate on Fundamentals of crystal structures- unit cells, lattice planes. **06**

c) Discuss about XANES. **08**

OR

7 a) Discuss about principles and applications of SEM. **06**

b) What is Miller indices and how can we obtain the same. **06**

c) Describe with illustration about Triple Layer model. **08**
