

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 20CV6PESWM

Course: Solid Waste Management

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I									CO	PO	Marks	
1	a)	Outline the inter-relationship of functional elements in a solid waste management system with flow diagram.							<i>CO1</i>	<i>PO1</i>	10	
	b)	Determine the energy content of solid waste sample with the following composition. Assume the Moisture Content(MC) = 16%, Ash content = 5%. What is the energy content on dry basis and ash free dry basis.							<i>CO1</i>	<i>PO2</i>	10	
OR												
2	a)	Explain with neat sketch, the operational sequence of Hauled Container System (HCS) and stationary container system (SCS).							<i>CO2</i>	<i>PO3</i>	10	
	b)	Describe the following with neat sketches i) Garbage Chute ii) Route optimization							<i>CO2</i>	<i>PO1 PO3 PO4</i>	10	
UNIT - II												
3	a)	Explain the factors affecting Incineration process.							<i>CO1</i>	<i>PO4</i>	08	
	b)	Explain the Mechanical volume reduction and chemical volume reduction							<i>CO1</i>	<i>PO4</i>	08	
	c)	Discuss the 3T'S of Incineration process							<i>CO1</i>	<i>PO4</i>	04	
UNIT - III												
4	a)	Discuss the factors to be considered for the design of aerobic composting.							<i>CO1</i>	<i>PO4</i>	10	
	b)	Outline the Indore composting process of MSW with neat sketch.							<i>CO3</i>	<i>PO6 PO7 PO8</i>	10	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Discuss the factors to be considered for the selection of potential landfill site.	CO2	PO6 PO7 PO8	10
	b)	Explain the control of leachate at landfill site with diagram.	CO3	PO6 PO7 PO8	10
UNIT - V					
6	a)	Enumerate the Diffraction Principle of XRD and Bragg's law.	CO3	PO1 PO3 PO6 PO7	10
	b)	Illustrate fundamentals of crystal structures-unit cells, lattice planes and Miller indices.	CO3	PO1 PO3 PO6 PO7	10
OR					
7	a)	Explain the principles and applications of SEM, TEM and associated energy dispersive X-ray spectroscopy (EDXS).	CO3	PO1 PO3 PO7	10
	b)	Explicate the applications of X-ray Fluorescence (XRF), XANES and EXAFS.	CO3	PO1 PO3 PO7	10
