

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV6PESWM

Course: Solid Waste Management

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Evaluate the functional elements of solid waste management by constructing an organized flow chart and analyzing each component's role.	<i>CO 2</i>	<i>PO1</i>	10
	b)	Analyze the physical and chemical characteristics of solid waste, discussing how these properties impact waste management practices.	<i>CO 1</i>	<i>PO1</i>	10
OR					
2	a)	Evaluate the various sources of solid waste, providing detailed examples and analyzing their contribution to the overall waste stream.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Assess the distinction between a stationary container system and a hauled container system using a clear diagram.	<i>CO 2</i>	<i>PO2</i>	10
UNIT – II					
3	a)	Evaluate the various techniques used for component separation of solid waste.	<i>CO 2</i>	<i>PO2</i>	10
	b)	Analyze the design criteria for the incineration of solid waste. Explain the working process of incineration with neat sketch.	<i>CO 2</i>	<i>PO2</i>	10
OR					
4	a)	Explain the 3T's of Incineration process. Explain the working of an electrostatic precipitator with neat diagram. Also discuss its efficiency as an emission controlling facility.	<i>CO2</i>	<i>PO2</i>	10
	b)	Define mechanical size reduction. Briefly explain the various types, mode of action and applications of equipment's used for mechanical size reduction.	<i>CO 2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Evaluate the factors influencing the composting of solid waste, analyzing how each factor affects the composting process.	<i>CO 3</i>	<i>PO2</i>	10
	b)	Elucidate the key aspects of Bangalore process and Indore process of composting.	<i>CO 3</i>	<i>PO2</i>	10
OR					
6	a)	Discuss the principle of working of vermicomposting method. List the advantages and disadvantages of this vermicomposting technique.	<i>CO 3</i>	<i>PO1</i>	10
	b)	Estimate the theoretical volume of methane gas that would be expected from the anaerobic digestion of a ton of a waste having the composition $C_{50}H_{100}O_{40}N$. Use the expression; $C_aH_bO_cN_d + (4a-b-2c+3d) H_2O / 4 \rightarrow [(4a+b-2c-3d)CH_4]/8 + [(4a-b+2c+3d)CO_2]/8 + dNH_3$	<i>CO 2</i>	<i>PO2</i>	10
UNIT - IV					
7	a)	Explicate the construction and operation of a sanitary landfill with a neat sketch.	<i>CO 3</i>	<i>PO2</i>	10
	b)	Assess various factors that need to be considered for selection of a suitable site for a landfill.	<i>CO 3</i>	<i>PO2</i>	10
OR					
8	a)	Explain the control of movements of gases in a sanitary landfill with a neat sketch	<i>CO 3</i>	<i>PO1</i>	10
	b)	Explain the area method and trench method of landfilling techniques stating merits and demerits.	<i>CO 3</i>	<i>PO1</i>	10
UNIT - V					
9	a)	Explain the working principle of XRD analysis and evaluate its application in the field of solid waste management.	<i>CO 3</i>	<i>PO1</i>	10
	b)	Elucidate the working principle of FTIR analysis and evaluate its application in solid waste management.	<i>CO 3</i>	<i>PO1</i>	10
OR					
10	a)	Evaluate the working principles of SEM-EDX and analyze their applications in solid waste management.	<i>CO 3</i>	<i>PO1</i>	10
	b)	Analyze experimental techniques for solid-phase investigations of municipal solid waste, evaluating their effectiveness and potential improvements.	<i>CO 3</i>	<i>PO1</i>	10
