

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 21CV7PEADR

Course: Advanced Design of R C Structures

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS 456-2000, SP-16 handbook, IS 3370-Part I, II, III, IV is allowed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			<i>CO</i>	<i>PO</i>	Marks		
	1	Design a continuous rectangular R.C. beam to support a dead load of 10 kN /m and Live load of 15 kN /m over four column supports of effective span 6.0m each. Assume mild exposure condition. Use BM and SF coefficients specified in IS 456						
	UNIT - II							
	2	Design an interior panel of a flat slab with following data Size of Floor- 20m x 20m Size of Panel- 5m x 5m Live Load- 4 kN /m ² . Size of column- 500mm diameter Assume mild exposure condition. Drops have to be provided.		<i>CO 1</i>	<i>PO 3</i>	20		
	OR							
	3	A flat slab is supported on 500mm diameter columns spaced 6m x 5m apart in both directions. The column head has a diameter of 100cm. The live load on the slab is 5 kN /m ² . Determine the unbalanced moments in an interior column. Also, check the flat slab in shear at interior support		<i>CO 1</i>	<i>PO 3</i>	20		
	UNIT - III							
	4	A reinforced concrete grid floor is to be designed to cover a floor area of size 12m x 15m. The spacing of ribs in mutually perpendicular direction is 2m c/c. Take Live load as 3kN /m ² and load due to floor finishes as 1.5 kN /m ² . Assume mild exposure condition. Assume the thickness of top slab as 100mm. Design the ribs of the grid floor using IS method.		<i>CO 2</i>	<i>PO 3</i>	20		
	UNIT - IV							
	5	An elevated circular water tank is planned to store 500kl water with a top dome. The tank is supported on a masonry tower. The		<i>CO 3</i>	<i>PO 3</i>	20		

		depth of water in tank is 5m. Take unit weight of water as 10 kN /m ³ . Take live load on dome as 1.0 kN /m ² . Design the roof dome, ring beam and tank walls.			
		OR			
6		<p>An underground water tank of size 10m x 4m x 5m is planned to store water. For the following data given below, Design the long wall and short wall of the rectangular tank for critical conditions.</p> <p>Type of soil- Submerged sandy soil, $\gamma_s = 16 \text{ kN/m}^3$ and $\phi = 30^\circ$</p> <p>Water table can rise up to ground level. Take unit weight of water = $\gamma_w = 10 \text{ kN/m}^3$ Use M30 concrete and Fe 415 steel.</p>	<i>CO 3</i>	<i>PO 3</i>	20
		UNIT - V			
7		<p>The columns in a portion of a building are arranged in a grid of size 9m x 9m with their spacing of 3.0 m apart in mutually perpendicular directions. Take the SBC of soil = 180 kN/m². The service load on each column can be taken as 425 kN. Adopt M30 grade concrete and Fe 415 steel. Take the size of column = 0.3m x 0.3m. Design a mat footing connecting the columns.</p>	<i>CO 4</i>	<i>PO 3</i>	20
