

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22CV7PEADR

Max Marks: 100

Course: Advanced Design of RC Structures

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed. Use of IS 456-2000, SP 16, IS 3370 is permitted

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			CO	PO	Marks
	1	Design a continuous rectangular R.C. beam with 3 spans (5.5 m clear length each for first and last span; 5m clear length for middle span) to support a uniformly distributed dead load of 20 kN/m and a live load of 12 kN/m. Assume mild exposure condition. Assume M20 concrete and Fe 415 steel.				
		OR		C01	P0 3	20
	2	Design a three-span continuous R.C. beam in accordance with IS 456:2000. The beam has the following specifications: Beam Details: <ul style="list-style-type: none"> Span length: 6 m each (effective) Width: 200 mm Overall depth: 600 mm Support conditions: Simply supported at the ends and continuous over intermediate supports Loading Details: <ul style="list-style-type: none"> Dead load (excluding self-weight): 13.5 kN/m Live load: 9 kN/m Assume mild exposure condition Materials: M 25 concrete, Fe500 steel				
UNIT - II						
3		Design a flat slab for an office building with the following specifications as per IS 456:2000: Specifications <ul style="list-style-type: none"> Column Grid Spacing: 6m x 6 m (square grid) Live Load: 3kN/m² Dead Load (excluding self-weight): 1.8 kN/m² Floor Finish Load: 1 kN/m² Material Properties: 		C01	P03	20

		<ul style="list-style-type: none"> ○ Grade of Concrete: M25 ○ Grade of Steel: Fe500 			
		OR			
4		<p>Design a flat slab for the following conditions as per IS 456:2000.</p> <p>Structure Details:</p> <ul style="list-style-type: none"> • The slab is supported on a square grid of columns spaced 5 m center-to-center in both directions. • Column dimensions: 500 mm x 500 mm. • No drop panels or column heads are provided. <p>Loading Details:</p> <ul style="list-style-type: none"> • Dead load (excluding self-weight): 4.5 kN/m². • Live load: 4 kN/m². <p>Exposure: Mild</p> <ul style="list-style-type: none"> • Grade of concrete: M25. <p>Grade of steel: Fe500.</p>	C01	P03	20
		UNIT - III			
5		<p>A reinforced concrete grid floor is to be designed to cover a floor area of size 12m x 18m. The spacing of ribs in mutually perpendicular direction is 2m c/c. Take Live load as 3kN /m² and load due to floor finishes as 0.8 kN /m². Assume mild exposure condition. Design the ribs of the grid floor using IS method. Assume Grade of concrete: M25 and Grade of steel: Fe500.</p>	C02	P03	20
		OR			
6		<p>Design a reinforced concrete waffle slab system for the following conditions using Rankine Grashoff method.</p> <p>Structure Details:</p> <ul style="list-style-type: none"> • A hall measuring 10 m x 15 m is to be covered using a grid floor system. • Grid beams are spaced at 2m center-to-center in both directions. • The grid beams are monolithic with the supporting columns at the intersections. <p>Loading Details:</p> <ul style="list-style-type: none"> • Dead load (excluding self-weight of the grid beams): 3 kN/m². • Live load: 2 kN/m². <p>Material Properties:</p> <ul style="list-style-type: none"> • Grade of concrete: M25. <p>Grade of steel: Fe415.</p>	C02	P03	20
		UNIT - IV			
7		<p>Design an elevated circular water tank with a capacity of 500 kL, supported on a masonry tower. The water depth is 4 m, and the tank has a top dome. Consider the unit weight of water as 9.8 kN/m³ and a live load of 1.2 kN/m² on the dome. Design the roof dome, ring beam, and tank walls. Grade of concrete: M25 and Grade of steel: Fe415. Permissible stresses should comply with the values recommended in IS:3370 and IS: 456-2000 codes.</p>	C03	P03	20

		OR			
	8	<p>An underground water tank of size 9m x 4m x 4m is planned to store water. For the following data given below, Design the long wall and short wall of the rectangular tank for critical conditions.</p> <p>Type of soil- Submerged soil, $\gamma_s = 18.5 \text{ kN/m}^3$ and $\phi = 30^\circ$</p> <p>Water table can rise up to ground level. Take unit weight of water = $\gamma_w = 9.8 \text{ kN/m}^3$ Take M30 concrete and Fe 415 steel.</p> <p>Permissible stresses should comply with the values recommended in IS:3370 and IS: 456-2000 codes.</p>	C03	P03	20
UNIT - V					
	9	<p>The columns in a portion of a building are arranged in a grid of size 9m x 9m with their spacing of 3.0 m apart in mutually perpendicular directions. Take the SBC of soil = 190 kN/m². The factored load on each column can be taken as 600 kN. Assume mild exposure condition. Take the size of column = 0.4m x 0.4m. Design a mat foundation. Grade of concrete: M25, Grade of steel: Fe415</p>	C04	P03	20
OR					
	10	<p>Design a mat foundation for a building as per IS 456:2000. The building has the following conditions:</p> <p>Structure Details:</p> <ul style="list-style-type: none"> The building is located on clay soil with a safe bearing capacity of 190 kN/m². There are 9 columns in a 6 m x 6 m grid arrangement, equally placed apart. Each column size is 450mm x450mm Overall service load due to all columns is 4440kN <p>Assume</p> <ul style="list-style-type: none"> Grade of concrete: M30. <p>Grade of steel: Fe500.</p>	C04	P03	20
