

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 21CV7PEAFD

Course: Advanced Foundation Design

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS 6403, IS 8009, IS 2911 and IRC 78 allowed

UNIT - I			CO	PO	Marks
1	a)	With neat illustrations list and explain briefly the different types of shallow foundations indicating the situation under which each one is provided.	CO1	PO3 & 2	10
	b)	A square footing is required to carry a load of 800kN. The footing is located at a depth of 1.5m below the ground surface. The properties of the soil are $G=2.7$, $e=0.4$, $c=20\text{kN/m}^2$, $\phi=25^\circ$. Assume ground water table is at the ground surface. Design the plan dimensions of the footing $FS=2$. Adopt Terzaghi's analysis $N_c=(N_q-1)\cot\phi$ $N_q=e^{\pi\tan\phi}\tan^2(45+\phi/2)$ $N_y=(N_q-1)\tan(1.4\phi)$	CO1	PO3 & 2	10
OR					
2	a)	List and briefly explain the basic requirements for a satisfactory shallow foundation	CO1	PO3 & 2	06
	b)	A rectangular footing, with a plan area of $1.4\text{m} \times 2\text{m}$ is to be placed at a depth of 2m below the ground surface. The footing would be subjected to a load inclined at 10° to the vertical. The subsoil is clayey, sandy silt with saturated unit weight of 18kN/m^3 and $c=10\text{kN/m}^2$ and $\phi=30$. Assuming the rate of loading is such that drained condition prevails, compute the magnitude of load the footing can carry if the water table is at the base of the footing. Use IS 6403 recommendations and take $FS=3$ Additionally, What will be the safe load if undrained condition prevails? Take $C_u=30\text{kN/m}^2$, $\phi=0$, $N_c=5.14$, $N_q=1$ and $N_y=0$.	CO1	PO3 & 2	14
UNIT - II					
3	a)	Proportion a rectangular combined footing for uniform pressure under deadload plus reduced live load, the following data:	CO1	PO3 & 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>Allowable soil pressures: 150 kN/m^2 for $DL + \text{reduced } LL$ 225 kN/m^2 for $DL + LL$</p> <table border="1"> <thead> <tr> <th>Column loads</th><th>Column A (kN)</th><th>Column B (kN)</th></tr> </thead> <tbody> <tr> <td>DL</td><td>540</td><td>690</td></tr> <tr> <td>LL</td><td>400</td><td>810</td></tr> </tbody> </table> <p>Distance c/c of columns = 5.4 m Projection of footing beyond Column A = 0.5 m</p>	Column loads	Column A (kN)	Column B (kN)	DL	540	690	LL	400	810		
Column loads	Column A (kN)	Column B (kN)											
DL	540	690											
LL	400	810											
	b)	<p>A footing 2m square rests on soft clay soil with its base at a depth of 1.5m from ground surface. The clay stratum is 3.5m thick and is underlain by a firm sand stratum. The clay soil has the following properties. $w_L=30\%$, $w_n=40\%$, $G=2.7$, $\phi_u=0$, $c_u=0.5 \text{ kg/cm}^2$. It is known that the clay stratum is normally consolidated. Using Skempton's equation, determine the net safe bearing capacity of the footing. Compute the settlement that would result if this load intensity were allowed to act on the footing. Natural water table is quite close to the ground surface</p>	CO1	PO3 & 2	10								
UNIT - III													
4	a)	<p>A group of 9 piles arranged in a square pattern with diameter and length of each pile as 25cm and 10m respectively, is used as a foundation in soft clay deposit. Taking the unconfined compressive strength of clay as 120 kN/m^2 and the pile spacing as 100cm centre to centre, find the load carrying capacity of the group by considering both individual and group action . Assume the bearing capacity factor $N_c=9$ and adhesion factor = 0.75. A factor of safety of 2.5 may be taken.</p>	CO2	PO1&2	12								
	b)	<p>Explain pile integrity test</p>	CO2	PO1&2	08								
OR													
5	a)	<p>Find the uplift capacity of the pile embedded in a sandy strata Given: $\text{Dia} = 0.4 \text{ m}$, $\text{Length} = 20 \text{ m}$, $\text{Depth of GWT} = 2 \text{ m}$ from surface, $\gamma_{\text{sat}} = 19.5 \text{ kN/m}^3$, $\gamma_b = 18 \text{ kN/m}^3$, $\gamma_w = 10 \text{ kN/m}^3$, $\gamma_{\text{conc}} = 24 \text{ kN/m}^3$, $\phi = \delta = 38^\circ$, $D_c = 14.5 \text{ B}$, $K=2.3$</p>	CO2	PO1&2	10								
	b)	<p>Enumerate the term negative skin friction and methods of reducing the same.</p>	CO2	PO1&2	06								
	c)	<p>List any four circumstances when a pile foundation is provided.</p>	CO2	PO1&2	04								
UNIT - IV													
6	a)	<p>A concrete pile $0.3 \text{ m} \times 0.3 \text{ m}$ and 5m long is subjected to a horizontal load of 5kN and moment of 4 kN-m at the ground level. Taking $k' = 2 \times 10^4 \text{ kN/m}^3$, calculate the maximum BM and deflection if</p> <ol style="list-style-type: none"> the head of the pile is considered to be free when the head is fixed with no external moment. 	CO2	PO1&2	20								

		The value of $E = 3 \times 10^7$ kN/m ² . Use Reese and Matlock method. Refer the table for non dimensional coefficients for laterally loaded pile			
		UNIT - V			
7	a)	Define swelling pressure and enumerate its influence on soils. Describe briefly the method of determining the same in the laboratory.	<i>CO3</i>	<i>PO1,2</i>	06
	b)	Briefly enumerate the methods adopted to minimize the potential damage caused by an expansive soil on a structure	<i>CO3</i>	<i>PO1,2</i>	08
	c)	Explain the concept of a CNS layer	<i>CO3</i>	<i>PO1,2</i>	06

Table 1 (For Q 6b) Non dimensional coefficients for laterally loaded pile (Reese and Matlock)

Z	A_y	A_s	A_m	A_r	A_p
0.0	2.435	- 1.623	0.000	1.000	0.000
0.1	2.273	- 1.618	0.100	0.989	- 0.227
0.2	2.112	- 1.603	0.198	0.956	- 0.422
0.3	1.952	- 1.578	0.291	0.906	- 0.586
0.4	1.796	- 1.545	0.379	0.840	- 0.718
0.5	1.644	- 1.503	0.459	0.764	- 0.822
0.6	1.496	- 1.454	0.532	0.677	- 0.897
0.7	1.353	- 1.397	0.595	0.585	- 0.947
0.8	1.216	- 1.335	0.649	0.489	- 0.973
0.9	1.086	- 1.268	0.693	0.392	- 0.977
1.0	0.962	- 1.197	0.727	0.295	- 0.962
1.2	0.738	- 1.047	0.767	0.109	- 0.885
1.4	0.544	- 0.893	0.772	- 0.056	- 0.761
1.6	0.381	- 0.741	0.746	- 0.193	- 0.609
1.8	0.247	- 0.596	0.696	- 0.298	- 0.445
2.0	0.142	- 0.464	0.628	- 0.371	- 0.283
3.0	- 0.075	- 0.040	0.225	- 0.349	0.226
4.0	- 0.050	0.052	0.000	- 0.106	0.201
5.0	- 0.009	0.025	- 0.033	0.013	0.046

Z	B_y	B_s	B_m	B_r	B_p
0.0	1.623	- 1.750	1.000	0.000	0.000
0.1	1.453	- 1.650	1.000	- 0.007	- 0.145
0.2	1.293	- 1.550	0.999	- 0.028	- 0.259
0.3	1.143	- 1.450	0.994	- 0.058	- 0.343
0.4	1.003	- 1.351	0.987	- 0.095	- 0.401
0.5	0.873	- 1.253	0.976	- 0.137	- 0.436
0.6	0.752	- 1.156	0.960	- 0.181	- 0.451
0.7	0.642	- 1.061	0.939	- 0.226	- 0.449
0.8	0.540	- 0.968	0.914	- 0.270	- 0.432
0.9	0.448	- 0.878	0.885	- 0.312	- 0.403
1.0	0.364	- 0.792	0.852	- 0.350	- 0.364
1.2	0.223	- 0.629	0.775	- 0.414	- 0.268
1.4	0.112	- 0.482	0.688	- 0.456	- 0.157
1.6	0.029	- 0.354	0.594	- 0.477	- 0.047
1.8	-0.030	- 0.245	0.498	- 0.476	- 0.054
2.0	-0.070	- 0.155	0.404	- 0.456	- 0.140
3.0	-0.089	0.057	0.059	- 0.213	0.268
4.0	-0.028	0.049	-0.042	0.017	0.112
5.0	-0.000	0.011	-0.026	0.029	- 0.002
