

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 21CV7OEEFA

Course: FINITE ELEMENT ANALYSIS

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>The state of stress at a point is given by $\sigma_{ij} =$</p> $\begin{bmatrix} 250 & 180 & -150 \\ 180 & -260 & 110 \\ -150 & 110 & 180 \end{bmatrix} \text{ kN/m}^2.$ <p>Determine the strain tensor at the point. Take $E = 200 \times 10^6 \text{ kN/m}^2$ and $\mu = 0.3$.</p>	C01	P01	08
	b)	<p>Write the stress - strain relationship for both plane stress and plane strain problems (derivation not required).</p>	C01	P01	04
	c)	<p>What is FEM? Discuss the types of elements based on geometry.</p>	C01	P01	08
UNIT - II					
2	a)	<p>Write the properties of stiffness matrix and derive the element stiffness matrix (ESM) for a 1D bar element (derivation of shape function is not required).</p>	C02	P01	10
	b)	<p>Identify and sketch indicating the degrees of freedom of the bar element to be used in the analysis of stepped bar shown in Fig.1 $A_1 = 600 \text{ mm}^2$, $A_2 = 400 \text{ mm}^2$, $L_1 = 2400 \text{ mm}$ and $L_2 = 1600 \text{ mm}$. Calculate Nodal Displacements and Stresses. Young's Modulus (E) = $2 \times 10^{11} \text{ N/m}^2$. Estimate the new displacement field caused considering self-weight also. $\rho = 7848 \text{ kg/m}^3$</p>	C02	P01, P02	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

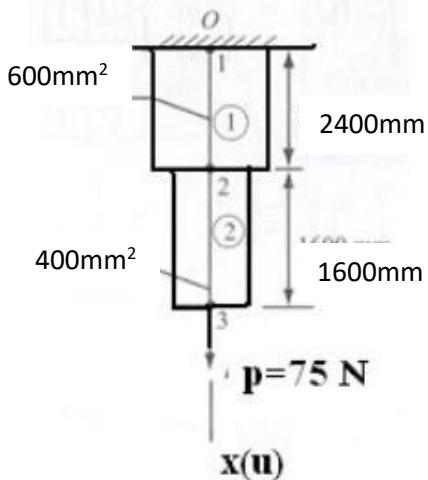


Fig. 1

OR

3 a) Find the nodal displacement, stress and strain of the system shown in Fig. 2. Take $E = 70 \text{ GPa}$, Area = 1.0 m^2 .

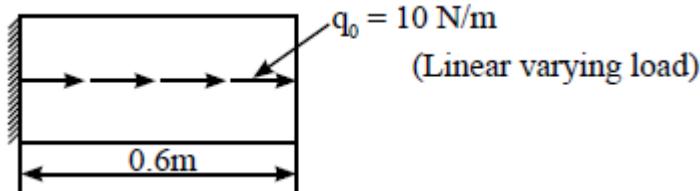


Fig. 2

b) Describe the functions of the pre-processor, solver/processor, and post-processor within the context of a commercial finite element package.

c) What requisites of the convergence criteria?

UNIT - III

4 For the beam and loading shown in Fig 3, determine the slopes at 2 and 3. Draw BMD and elastic curve. Take $E = 200 \text{ GPa}$, $I = 4 \times 10^6 \text{ mm}^4$.

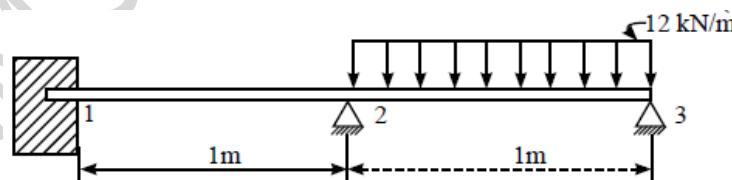


Fig. 3

OR

5 a) Derive Hermite shape function and stiffness matrix for a beam element.

b) For the two-bar truss shown in Fig. 4, construct the finite element model. Determine the nodal displacements and compute the element forceses.

C02

P01,
P02

10

C01

P01

06

C01

P01

04

C02

P01,
P02

20

C02

P01

10

C02

P01,
P02

10

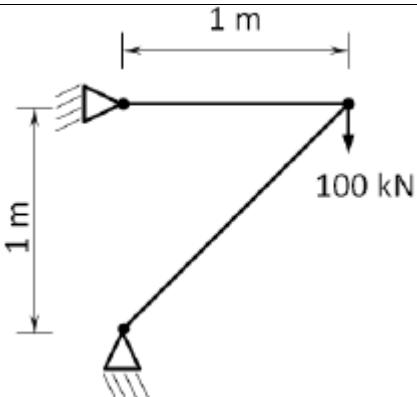


Fig. 4

UNIT - IV

6 a) A modal co-ordinate of the triangular is shown in Fig. 5. At the interior point 'P' the co-ordinate is $(3.3, y)$ and $N1 = 0.3$. Determine 'N2' and 'N3' and the y co-ordinate at point P.

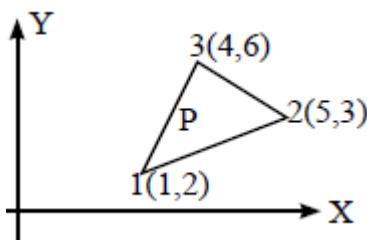
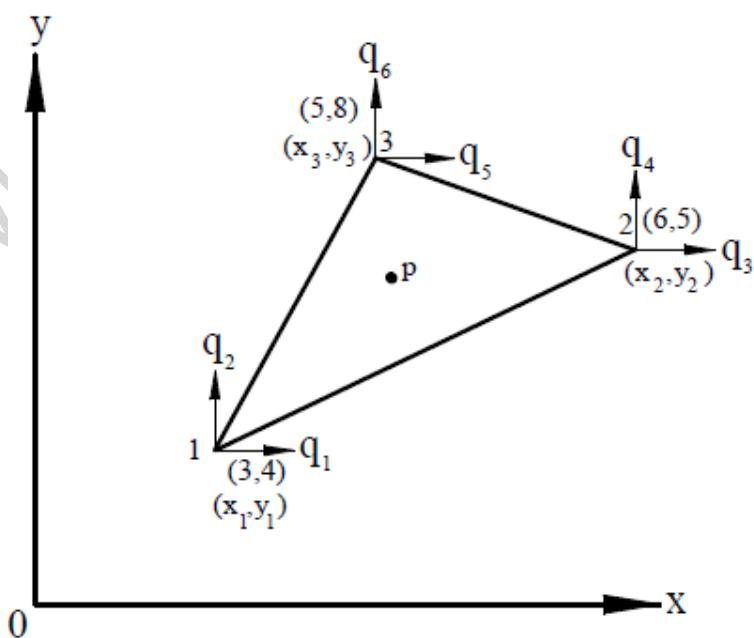
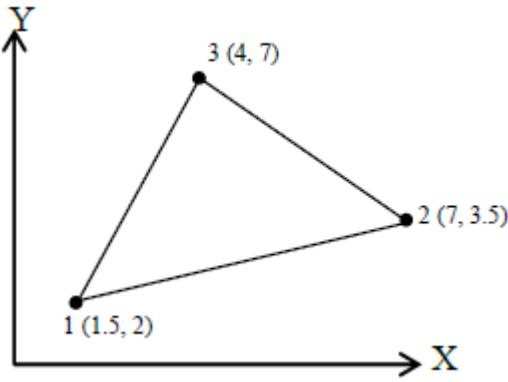




Fig. 5

b) Compute the strain displacement matrix for the element shown in Fig. 6. Also determine the element strains. All dimensions are in mm. Nodal displacement vector in mm $\{q\} = [0.002, 0.001, 0.001, -0.004, -0.003, 0.007]^T$

Fig. 6

	c)	<p>Determine the 'Jacobian' for the triangular element shown in Fig.7</p>			08
		UNIT - V			
7	a)	<p>A four-noded quadrilateral element has coordinates 1 (10, 10), 2 (50, 10), 3 (60, 60) and 4 (10, 40). If the element nodal displacement vector is given by $\{q\} = \{0, 0, 1, 2, 0, 1.5, 1, 0\}$ mm, determine (i) the x & y coordinates of point P which has $\xi = 0.5$ and $\eta = 0.5$ and (ii) displacements u & v of the point P.</p>	C03	P01	08
	b)	<p>Derive Jacobian matrix for a linear Quadrilateral element.</p>	C03	P01	06
	c)	<p>Differentiate between isoparametric, subparametric and superparametric elements.</p>	C03	P01	06
