

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 21CV7PEIWW

Max Marks: 100

Course: Industrial Wastewater Treatment

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	Differentiate domestic and Industrial wastewater		<i>CO1</i>	<i>PO1</i>	05
	b)	Enumerate the importance of Industrial wastewater treatment		<i>CO1</i>	<i>PO1</i>	05
	c)	Explain the effects of different pollutants on streams and on municipal sewage treatment plant.		<i>CO1</i>	<i>PO1</i>	10
OR						
2	a)	Explain the regulatory frame work and standards governing industrial waste water discharge.		<i>CO 1</i>	<i>PO 1</i>	10
	b)	Elaborate on the effluent, stream standards and legislation to Control water pollution		<i>CO 1</i>	<i>PO 1</i>	10
			UNIT - II			
3	a)	Compare stream standards and effluent standards.		<i>CO2</i>	<i>PO1</i>	05
	b)	With neat sketch illustrate oxygen sag curve in stream		<i>CO2</i>	<i>PO1</i>	07
	c)	A stream saturated with DO has a flow of $1.2 \text{ m}^3/\text{s}$, BOD of 4 mg/L and rate constant 0.3/day. It receives an effluent discharge of $0.25\text{m}^3/\text{Sec}$, having BOD 20mg/L, DO 5 mg/L and rate constant 0.13 per day. The average velocity of flow of the stream is $0.18\text{m}/\text{Sec}$. Calculate DO deficit at point 20km and 40km downstream. Assume that the temperature is 20° C throughout and BOD is measured at 5 days. Assume saturation DO at 20° C as 9.17mg/L.		<i>CO2</i>	<i>PO1</i>	08
OR						
4	a)	A city discharges 100 cumecs of sewage into a river, which is fully saturated with oxygen and flowing at the rate of 1500cumecs during its lean days with a velocity of 0.1 m/sec . the 5-day BOD of sewage at the given temp is 280 mg/l. Find when and where the critical D.O Deficit will occur in the downstream portion of the river and what is its amount. Assume coefficient of purification of the stream(f) = 0.4 and K_d = 0.1.		<i>CO 2</i>	<i>PO 1</i>	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain the process of self-purification of streams	CO 2	PO 1	08
		UNIT - III			
5	a)	Enumerate different techniques for volume reduction of industrial waste water.	CO3	PO1	10
	b)	Explain equalization and proportioning of industrial wastewater with neat sketch.	CO3	PO1	10
		OR			
6	a)	Enumerate different techniques for strength reduction of industrial waste water.	CO3	PO1	10
	b)	List and explain different neutralization methods.	CO3	PO1	10
		UNIT - IV			
7	a)	Enumerate any five techniques for removal of inorganic dissolved solids	CO3	PO1	10
	b)	Enumerate any five techniques for treatment and disposal of sludge solids	CO3	PO1	10
		OR			
8	a)	Enumerate any five techniques for removal of organic dissolved solids	CO3	PO1	10
	b)	Differentiate between organic and inorganic solids removal in industrial wastewater.	CO3	PO1	10
		UNIT - V			
9	a)	Explain the advantages of joint treatment of raw industrial waste with domestic sewage.	CO3	PO1	10
	b)	With the help of flow diagram explain sources and characteristics of waste water generated from tanning process.	CO3	PO1	10
		OR			
10	a)	With the help of flow diagram explain sources and characteristics of waste water generated from pulp and paper mills.	CO3	PO1	10
	b)	With the help of flow diagram explain sources and characteristics of waste water generated from sugar manufacturing process.	CO3	PO1	10
