

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 22CV7OERSG

Max Marks: 100

Course: Remote Sensing and GIS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define remote sensing and explain the key steps in the remote sensing process.	<i>CO1</i>	<i>PO1</i>	10
		b)	Define spectral reflectance. With a neat diagram explain the salient features of the spectral reflectance curves of bare soil, water and green vegetation.	<i>CO1</i>	<i>PO1</i>	10
OR						
	2	a)	Explain various elements of the interaction between electromagnetic radiation and the Earth's atmosphere.	<i>CO1</i>	<i>PO1</i>	10
		b)	Interpretation of imagery more difficult than the everyday visual interpretation of our surroundings. Comment on the same emphasizing on the elements of visual interpretation.	<i>CO1</i>	<i>PO1</i>	10
			UNIT - II			
	3	a)	Explain GIS, its components and functions in detail.	<i>CO1</i>	<i>PO1</i>	10
		b)	Differentiate between geographic coordinate system (GCS) and projected coordinate system (PCS).	<i>CO1</i>	<i>PO1</i>	10
OR						
	4	a)	Explain the importance of georeferencing and illustrate the steps involved in the process.	<i>CO1</i>	<i>PO1</i>	10
		b)	Explain map projections and the findings of Carl Friedrich Gauss's Theorema Egregium. Based on this, recommend an appropriate map projection for the global navigational purpose and justify the same.	<i>CO1</i>	<i>PO1</i>	10

UNIT - III					
5	a)	Differentiate between Multi-Objective Decision Making (MODM) and Multi - Attribute Decision Making (MADM) providing an example for each.	CO2	PO1	10
	b)	Explain decision rules and a Pareto-Optimal situation in decision making, taking an example of flight ticket booking.	CO2	PO2	10
		OR			
6	a)	Explain the decisions making process under (i) certainty and (ii) uncertainty.	CO2	PO1	10
	b)	Darshan wants to buy a new smartphone for his daily use. He has three main criteria for decision – Price, Processor, and the camera quality (pixel and sensors). For each criteria, pairwise relative weights of alternatives are given below in the form of matrices using 1-5 scale for comparison. <ul style="list-style-type: none"> i) Use analytical hierarchical process to advise Darshan which mobile to choose from option A (Iphone), B(Samsung) and C (OnePlus). ii) Comment on the changes that may happen in the decision, if camera quality is removed from the decision criteria. 	CO2	PO2	10

Intensity of Importance	Definition	Explanation
1	Equal Importance	Two alternatives contribute equally to the objective.
3	Moderate importance	Moderately favours one alternative over other.
5	Strong importance	Strongly favours one alternative over another alternative.
2,4	Intermediate values between the two adjacent judgements	Compromise between two adjacent judgements
Reciprocal s of above	If intensity of one alternative over another is 3 then it will be 1/3 if other alternative is compared with the one.	

Price			Processor		
	A	B	C	A	B
A	1	1/5	1/3		
B	5	1	2		
C	3	1/2	1		

	Price	Processor	Camera
Price	1	3	2
Processor	1/3	1	1/5
Camera	1/2	5	1

UNIT - IV						
7	a)	Explain the following data operations in GIS, stating the procedure and the applications of the same. i) Overlay ii) Clip iii) Union iv) Dissolve and v) Buffering	<i>CO3</i>	<i>PO1</i>	10	
	b)	Elaborate on Geographic Resources Analysis Support System as an open-source software and levels of freedom associated with it.	<i>CO3</i>	<i>PO1</i>	10	
OR						
8	a)	Differentiate between classification and reclassification. Explain the procedure and applications of raster data reclassification.	<i>CO3</i>	<i>PO1</i>	10	
	b)	Discuss mechanism of GIS integration with decision making in Expert GIS.	<i>CO3</i>	<i>PO1</i>	10	
UNIT - V						
9	a)	With a suitable case study, explain the potential application of GIS in the Central government's mission to supply tap water to every homes.	<i>CO3</i>	<i>PO2</i>	10	
	b)	Elaborate on Enterprise GIS highlighting the capabilities and objectives.	<i>CO3</i>	<i>PO1</i>	10	
OR						
10	a)	Discuss case studies on Use of GIS in Traffic management and policies.	<i>CO3</i>	<i>PO1</i>	10	
	b)	Discuss capacity planning and the RDBMS software selection in context of enterprise GIS implementation of food delivery organization.	<i>CO3</i>	<i>PO2</i>	10	
