

B.M.S College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Main Examinations

Programme: B.E.

Semester: VIII

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 21CV8HSCEP

Max Marks: 100

Course: Construction Project Management, Economics and Professional Ethics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT – I	CO	PO	Marks																						
1	a)	Discuss the merits & demerits of using bar charts for project Scheduling.	CO1	PO11	10																						
	b)	Explain how a Work Breakdown Structure (WBS) contributes to project planning, scheduling, and resource allocation.	CO1	PO11	10																						
		UNIT – II																									
2	a)	Define the following terms with respect to CPM : i. Duration ii. Earliest start time iii. Earliest finish Time iv. Total float	CO1	PO11	8																						
	b)	Develop the network diagram and identify the critical path using CPM for the following activity data in Table 1. <table border="1"> <caption>Table 1</caption> <thead> <tr> <th>Activity</th><th>1-2</th><th>2-3</th><th>2-4</th><th>3-5</th><th>3-6</th><th>4-5</th><th>4-7</th><th>5-8</th><th>6-8</th><th>7-8</th></tr> </thead> <tbody> <tr> <th>Duration (Days)</th><td>5</td><td>2</td><td>6</td><td>4</td><td>4</td><td>2</td><td>3</td><td>7</td><td>8</td><td>2</td></tr> </tbody> </table>	Activity	1-2	2-3	2-4	3-5	3-6	4-5	4-7	5-8	6-8	7-8	Duration (Days)	5	2	6	4	4	2	3	7	8	2	CO1	PO1	12
Activity	1-2	2-3	2-4	3-5	3-6	4-5	4-7	5-8	6-8	7-8																	
Duration (Days)	5	2	6	4	4	2	3	7	8	2																	
		OR																									

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	a)	Develop the network diagram and identify the critical path for the data provided in Table 2. Compute EST, EFT, LST, LFT and Total Float for each activity	CO 1	PO11	8											
			Table 2														
			<table border="1" style="display: inline-table; vertical-align: middle;"> <thead> <tr> <th>Activity</th> <th>1-2</th> <th>1-3</th> <th>2-4</th> <th>3-4</th> <th>4-5</th> </tr> </thead> <tbody> <tr> <td>Duration (Days)</td> <td>2</td> <td>4</td> <td>1</td> <td>6</td> <td>7</td> </tr> </tbody> </table>	Activity	1-2	1-3	2-4	3-4	4-5	Duration (Days)	2	4	1	6	7		
Activity	1-2	1-3	2-4	3-4	4-5												
Duration (Days)	2	4	1	6	7												
		b)	Establish the critical path and calculate the slack time for each activity in the following network shown in Figure 1.	CO 1	PO11	12											
			<pre> graph LR 1((1)) -- 2 --> 2((2)) 1 -- 2 --> 3((3)) 1 -- 1 --> 4((4)) 2 -- 4 --> 6((6)) 3 -- 5 --> 7((7)) 3 -- 8 --> 5((5)) 4 -- 3 --> 5 6 -- 1 --> 8((8)) 7 -- 4 --> 8 8 -- 3 --> 9((9)) </pre>														
			Figure 1														
			UNIT - III														
	4	a)	Discuss the objectives of cost control in construction projects.	CO 2	PO11	10											
		b)	Why do construction firms implement Materials Management System? Highlight any five key benefits.	CO 2	PO11	10											
			UNIT - IV														
	5	a)	Explain the key objectives of financial management in the context of civil engineering firms.	CO 2	PO11	10											
		b)	A man is planning to build his own house. He plans to divert his bonus of Rs. 40,000/- as investment every year for the next 10 years. The bank gives 12% interest rate compounded annually. Find the maturity value of his account after 10 years.	CO 2	PO11	10											
			OR														
	6	a)	Discuss in detail on how the concept of time value of money influences decisions regarding project financing in civil engineering.	CO 2	PO11	10											

	b)	<p>A contractor has two alternatives for purchasing a mini earth excavator; The alternatives are from two different manufacturing companies. The cash flow details of the alternatives are as follows:</p> <p>Alternative 1 : Initial Purchase cost is Rs. 3,00,000/- Annual operating and maintenance cost is Rs. 20,000/- Expected salvage value is Rs. 1,25,000/- Useful life is 5 years.</p> <p>Alternative 2 : Initial Purchase cost is Rs. 2,00,000/- Annual operating and maintenance cost is Rs. 35,000/- Expected salvage value is Rs. 70,000/- Useful life is 5 years.</p> <p>Using present worth method, find out which alternative should be selected, if the rate of interest is 10% per year.</p>	<i>CO 2</i>	<i>PO11</i>	10
		UNIT – V			
7	a)	Why is it important for civil engineers to adhere to professional ethics in their practice? Support your answer with details on consequences.	<i>CO 2</i>	<i>PO8</i>	10
	b)	Discuss the personal and professional benefits of maintaining high ethical standards in civil engineering.	<i>CO 2</i>	<i>PO8</i>	10

B.M.S.C.E. - EVEN SEM 2023-24

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 21CV8PEEIA

Course: Environmental Impact Assessment

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I	CO	PO	Marks
1	a)	Describe conceptually the relationship between EIA, FONSI and EIS with a flow chart		CO 1	PO1	10
	b)	Explain the purpose and need of EIA		CO 1	PO1	10
UNIT – II						
2	a)	Explain briefly the step-by-step procedure for conducting EIA		CO 1	PO1	10
	b)	Define EIA List the limitations and advantages of EIA		CO 1	PO1	10
UNIT - III						
3	a)	List the EIA methodology and explain the checklist and matrix method the EIA methodology		CO 2	PO2	10
	b)	Discuss the basic criteria to select an appropriate methodology for a specific project?		CO 2	PO2	10
UNIT – IV						
4	a)	Explain the assessment and prediction of impact on air attribute for EIA process with the flow diagram		CO 3	PO3	10
	b)	Explain the assessment and prediction of the impact on water attribute for EIA process with flow diagram		CO3	PO3	10
OR						
5	a)	List the advantages and disadvantage of public participation in environmental decision-making		CO 3	PO3	10
	b)	Explain the various steps involved in assessment and prediction of impacts on socio economic Environment		CO 3	PO3	10
UNIT – V						
6	a)	Describe the EIA process for nuclear power plant highlighting the environmental settling connected with project activity		CO 3	PO4	10
	b)	Describe the EIA process for thermal project highlighting the environmental settling connected with project activity		CO 3	PO4	10
OR						
7	a)	Describe the EIA process for water resource project highlighting the environmental settling connected with project activity		CO3	PO4	10
	b)	Describe the EIA process for mining project highlighting the environmental settling connected with project activity		CO3	PO4	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Main Examinations

Program: B.E.

Branch: Civil Engineering

Course Code: 21CV8PEERD

Course: Earthquake Resistant Design of Structures

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Answer any FIVE questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of IS 1893 (2016) is permitted

UNIT – I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Discuss the causes of earthquakes as per Elastic Rebound Theory.	<i>CO 1</i>	<i>PO1</i>	8
	b)	Explain the following with the help of sketches: <ol style="list-style-type: none"> Focus, epi-center, Focal depth, epi-central distance Types of plate boundaries Magnitude and Intensity 	<i>CO 1</i>	<i>PO1</i>	12
UNIT – II					
2	a)	List the key historical earthquakes that have occurred in India and enumerate the observed effects (failures) on structures with a case study during significant past earthquakes in India.	<i>CO 2</i>	<i>PO1</i>	10
	b)	Elucidate the construction methodology of the displacement response spectrum and explain the need for a combined D-V-A spectrum (displacement, velocity, and acceleration) when each contains the same information.	<i>CO 2</i>	<i>PO1</i>	10

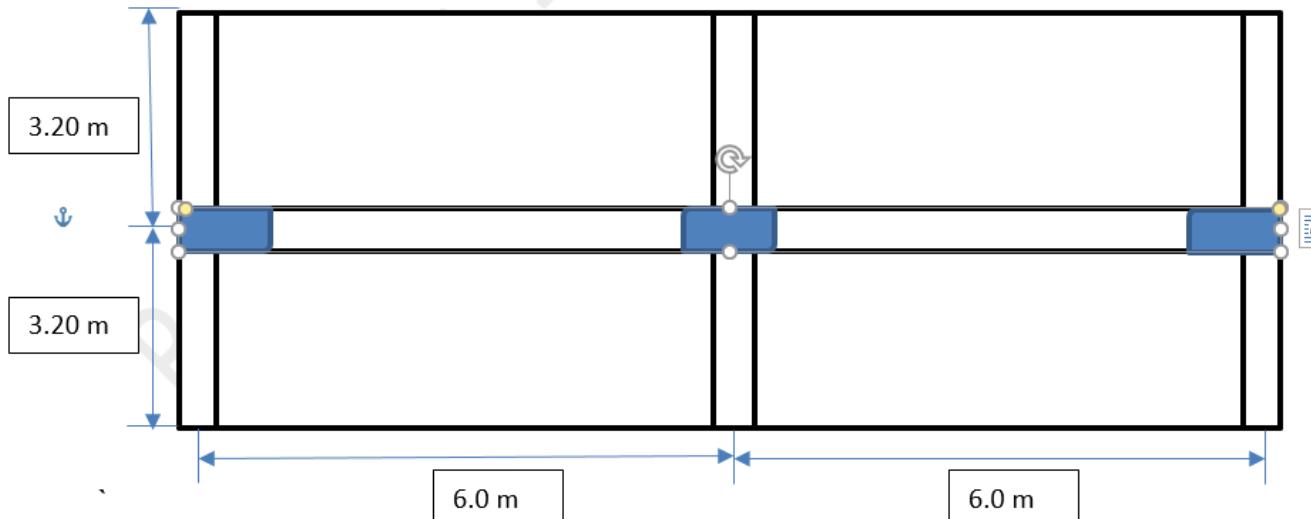
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

3

Analyze a four-storeyed RC building shown in **Figure No.3** by an equivalent static method as per IS 1893 (part 1): 2016 and estimate lateral forces.

Data given:


- i. Type of structure: Multi-storey rigid jointed plane frame (Special moment resisting frame)
- ii. Seismic Zone: III
- iii. Number of Stories: G+3
- iv. Floor height: 3.25 m (all floors at same height)
- v. Infill wall: 230 mm thick including plaster
- vi. Imposed Load: 3.50 kN/m²
- vii. Materials M20 Concrete and Fe 415 Steel
- viii. Size of columns: 230 mm X 400 mm
- ix. Size of Beams: 230 mm X 500 mm
- x. Depth of Slab: 125 mm
- xi. Specific Weight of RCC: 25 kN/m³
- xii. Specific Weight of Infill: 20 kN/m³
- xiii. Type of Soil: medium stiff soil
- xiv. Response Spectra: As per IS 1893 (Part 1) 2016

Time history: Compatible to IS 1893 (Part 1) 20 spectra at medium stiff soil site for 5% damping.

CO 3

PO3

20

Figure No. 3a

OR

4

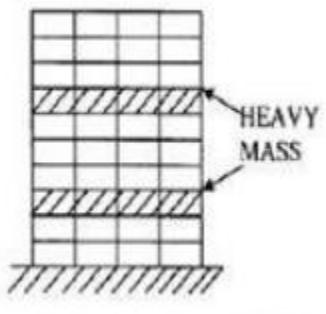
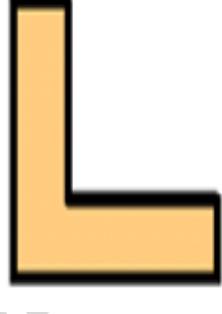
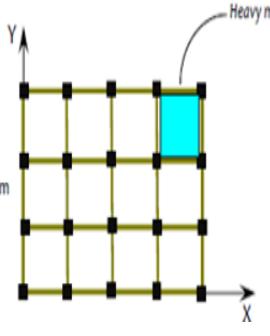
a)

Calculate the design horizontal seismic coefficients A_h for proposed G+9 floor RC special moment resisting frame Hospital building for two cities Kohima and Mysore separately. Height of all floors is 3.50 m. Soil type is soft soil.

CO 3

PO3

10




b)

List out different methods to estimate earthquake forces in buildings as per IS 1893-2016 (Part I) code and explain the principles adopted to analyze the building as per Equivalent static method.

CO 3

PO1

10

UNIT – IV					
5	a)	Explain ‘dual’ systems with sketches. List reasons as to why it is better than moment-resisting framed systems.	<i>CO 3</i>	<i>PO1</i>	10
	b)	Discuss the codal provisions as per IS:13920 to make the flexural members in the frame ductile.	<i>CO 3</i>	<i>PO1</i>	10
OR					
6	a)	List out any undesirable earthquake resistance aspects noticed in the schematic diagrams of different structural forms shown in Figure No. 6a (open ground floor), Figure No.6b (heavy at irregular floor levels), Figure No.6c (L shaped building), and Figure No.6d (heavy mass at building corner). Justify your answer with the technical terms associated with them.	<i>CO 3</i>	<i>PO1</i>	10
		Figure No. 6a	Figure No. 6b	Figure No. 6c	Figure No. 6d
	b)	Explain the significance of providing adequate lap splice length in column-beam junctions to achieve ductility as per IS 13920.	<i>CO 3</i>	<i>PO1</i>	10
UNIT – V					
7	a)	Explain the concept of “out-of-plane” and “in-plane” failure in masonry structures(buildings).	<i>CO 4</i>	<i>PO1</i>	10
	b)	Discuss the importance of proper detailing and construction practices in achieving earthquake resilience in masonry buildings.	<i>CO 4</i>	<i>PO1</i>	10

B.M.S.C.E. - EVEN SEM 2023-24

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 21CV8PEIWM

Course: Integrated Watershed Management

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Watershed development programs are essential in India. Discuss their relevance with the help of any appropriate case-study.	<i>CO 1</i>	<i>PO1</i>	10	
	b)	Explain the role of stakeholders in water conservation and their involvement in sustainable watershed management.	<i>CO 1</i>	<i>PO1</i>	10	
			UNIT - II			
2	a)	Enumerate the universal soil loss equation to estimate the soil loss rate due to water induced erosion.	<i>CO 2</i>	<i>PO1</i>	10	
	b)	Discuss about the modeling of rainfall-runoff process, subsurface flows and groundwater flow in brief.	<i>CO 2</i>	<i>PO1</i>	10	
			OR			
3	a)	Elaborate on the concept of general watershed modelling with an example.	<i>CO 2</i>	<i>PO1</i>	10	
	b)	List the various predominant hydrological processes and their impact on the watershed management.	<i>CO 2</i>	<i>PO1</i>	10	
			UNIT - III			
4	a)	Elaborate on the environmental guidelines for water quality management.	<i>CO 3</i>	<i>PO1</i>	10	
	b)	Describe the sources of surface water pollution. Briefly explain the key concept of surface water quality modelling.	<i>CO 3</i>	<i>PO1</i>	10	
			UNIT - IV			
5	a)	Explain the flood routing through the reservoir. Also, discuss how flood control measures and reservoir operations helps to mitigate the flood risks downstream.	<i>CO 4</i>	<i>PO1</i>	10	
	b)	Explain different indices used to measure the drought and its classification.	<i>CO 4</i>	<i>PO1</i>	10	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR						
6	a)	Elaborate on various tools and techniques available for the assessment of the meteorological and agricultural drought.	<i>CO 4</i>	<i>PO1</i>	10	
	b)	List the various factors involved in the flood estimation and elaborate on their significance.	<i>CO 4</i>	<i>PO1</i>	10	
UNIT - V						
7	a)	Explain the role of integrated decision support systems in the sustainable development of river basins.	<i>CO 1</i>	<i>PO1</i>	10	
	b)	Elaborate on the applications of remote sensing and GIS in evaluating the characteristics of watershed and its management.	<i>CO 1</i>	<i>PO1</i>	10	

B.M.S.C.E. - EVEN SEM 2023-24

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 21CV8PEUTP

Course: Urban Transport Planning

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT – I						CO	PO	Marks																				
1	a)	Describe various urban transportation problems and issues. Explain any three challenges and limitations of Transportation System.						CO 1	PO 1	10																				
	b)	Explain Transportation planning process and discuss various components associated with the preparation of transportation plan.						CO 1	PO 1	10																				
		UNIT – II																												
2	a)	Explain the importance of secondary data and mention the types of data to be collected as a part of secondary data.						CO 1	PO 1	10																				
	b)	Explain briefly the conduct of household survey along with its importance.						CO 1	PO 1	10																				
		UNIT - III																												
3	a)	Following information are obtained from transportation survey. Develop linear regression model for the data.						CO 2	PO 3	10																				
		<table border="1"> <tr> <td>Traffic zone</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> </tr> <tr> <td>Population(in thousands)</td> <td>20</td> <td>24</td> <td>28</td> <td>32</td> <td>36</td> <td>39</td> </tr> <tr> <td>Total trips generated(in 100)</td> <td>10</td> <td>12</td> <td>17</td> <td>16</td> <td>18</td> <td>20</td> </tr> </table>									Traffic zone	1	2	3	4	5	6	Population(in thousands)	20	24	28	32	36	39	Total trips generated(in 100)	10	12	17	16	18
Traffic zone	1	2	3	4	5	6																								
Population(in thousands)	20	24	28	32	36	39																								
Total trips generated(in 100)	10	12	17	16	18	20																								
	b)	Explain the factors governing trip generation and attraction rates.						CO 2	PO 3	10																				
		OR																												
4	a)	Given that a zone has 275 household with access to car and 275 household without access to car and the average trip generation rates for each group are 5.0 and 2.5 trips per day, respectively. Assuming that in the future, households will have similar distribution with access and without access to a car, as per the existing situation. There will be an addition of 550 households with similar distribution of car ownership. Find the growth factor and future trips from that zone.						CO 2	PO 3	08																				
	b)	Explain briefly the statistical tests to be carried out to develop multiple regression.																												

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT – IV																																																			
5	a)	Consider the following trip matrix with the target origins and destinations for the future year. As per the Furness method.	<i>CO 2</i>	<i>PO 3</i>	12																																																
		<table border="1"> <thead> <tr> <th></th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>π_i</th> <th>Π_i</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>10</td> <td>20</td> <td>15</td> <td>18</td> <td>63</td> <td>140</td> </tr> <tr> <td>2</td> <td>21</td> <td>16</td> <td>17</td> <td>14</td> <td>68</td> <td>150</td> </tr> <tr> <td>3</td> <td>30</td> <td>21</td> <td>25</td> <td>27</td> <td>103</td> <td>200</td> </tr> <tr> <td>4</td> <td>10</td> <td>9</td> <td>16</td> <td>13</td> <td>48</td> <td>100</td> </tr> <tr> <td>aj</td> <td>71</td> <td>66</td> <td>73</td> <td>72</td> <td></td> <td></td> </tr> <tr> <td>Aj</td> <td>150</td> <td>120</td> <td>180</td> <td>160</td> <td></td> <td></td> </tr> </tbody> </table>		1	2	3	4	π_i	Π_i	1	10	20	15	18	63	140	2	21	16	17	14	68	150	3	30	21	25	27	103	200	4	10	9	16	13	48	100	aj	71	66	73	72			Aj	150	120	180	160				
	1	2	3	4	π_i	Π_i																																															
1	10	20	15	18	63	140																																															
2	21	16	17	14	68	150																																															
3	30	21	25	27	103	200																																															
4	10	9	16	13	48	100																																															
aj	71	66	73	72																																																	
Aj	150	120	180	160																																																	
	b)	Explain the Advantages and Disadvantages of Growth Factor Models.	<i>CO 2</i>	<i>PO</i>	8																																																
		OR																																																			
6	a)	Explain the various methods for trip distributions with respect to growth factor models.	<i>CO 2</i>	<i>PO1</i>	10																																																
	b)	Describe the concept of gravity model and comment on the calibration of gravity model.	<i>CO 2</i>	<i>PO1</i>	10																																																
		UNIT – V																																																			
7	a)	Explain the various factors affecting the modal split.	<i>CO 3</i>	<i>PO1</i>	10																																																
	b)	List the different traffic assignment techniques and briefly explain diversion curves.	<i>CO 3</i>	<i>PO1</i>	10																																																
