

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May / June 2025 Semester End Main Examinations

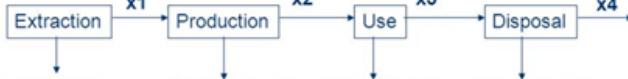
Programme: B.E.

Semester: VIII

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 22CV8OESLA


Max Marks: 100

Course: Sustainability and Lifecycle Assessment

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Illustrate with neat sketch the three pillars of sustainable development.		CO1	PO6, PO7	10
		b)	Elucidate the challenges to Sustainability and ISO Framework of LCA.		CO1	PO6, PO7	10
	OR						
	2	a)	Discuss any five sustainable development goals (SDG's).		CO1	PO6, PO7	10
		b)	Illustrate any five best practices for making the industrial process to move towards the goal of sustainability.		CO1	PO6, PO7	10
				UNIT - II			
	3	a)	Explain the necessity of Sustainable Development Indicator (SDI) and also Discuss the criteria for a viable SDI.		CO2	PO6, PO7	10
		b)	Write a brief note on GHG emissions and developing eco-indicators.		CO2	PO6, PO7	10
	OR						
	4	a)	Discuss different themes of SDI. Also explain the process of grouping of indicators.		CO2	PO6, PO7	10
		b)	Illustrate different types of environmental impact categories.		CO2	PO6, PO7	10
			UNIT - III				
	5	a)	Explain different forms of energy and energy conversion efficiency.		CO2	PO6, PO7	10
		b)	An alloy has been manufactured by the combination of Copper, Nickel, and Zinc in the ratio of 3:1:2. The average energy and		CO2	PO6, PO7	10

		<p>carbon emission factors & the distance travelled for transporting of each material to the manufacturing unit is as shown in the table below.</p> <table border="1"> <thead> <tr> <th>Name of the metal</th><th>Energy factors (GJ/tonne)</th><th>Emission factors (kg/tonne)</th><th>Average distance travelled (km)</th></tr> </thead> <tbody> <tr> <td>Copper</td><td>35.0</td><td>3530</td><td>150</td></tr> <tr> <td>Nickel</td><td>110.0</td><td>20,000</td><td>80</td></tr> <tr> <td>Zinc</td><td>54.0</td><td>5890</td><td>100</td></tr> </tbody> </table> <p>The processing energy factor for making of alloy was found to be 30 GJ/T. Assuming that, all the vehicles used for transporting of materials has same mileage factor of 10 km/litre and specific energy of diesel is 42 MJ/litre, carbon emission factor 2.68 kg/litre, determine the total embodied energy and carbon dioxide emission for the manufacturing of alloy.</p>	Name of the metal	Energy factors (GJ/tonne)	Emission factors (kg/tonne)	Average distance travelled (km)	Copper	35.0	3530	150	Nickel	110.0	20,000	80	Zinc	54.0	5890	100							
Name of the metal	Energy factors (GJ/tonne)	Emission factors (kg/tonne)	Average distance travelled (km)																						
Copper	35.0	3530	150																						
Nickel	110.0	20,000	80																						
Zinc	54.0	5890	100																						
		OR																							
6	a)	Discuss with a neat sketch the Lifecycle pattern of car or refrigerator (any one). Discuss the inflows and outflows at each stage.	CO2	PO6, PO7	10																				
	b)	The structure of a steel-framed building requires, 700 kg of standard concrete (foundation) and 150 kg of steel (100% recycled) per square meter area. The enclosure requires 3 m ² of 0.1 m fiberglass insulation and 8.5 m ² of 19 mm plywood. Determine the total embodied energy and total carbon footprint of structure plus enclosure. The unit energy and carbon footprint values for the materials are as given in the table below.	CO2	PO6, PO7	10																				
		<table border="1"> <thead> <tr> <th>Material</th><th>Density (kg/m3)</th><th>Embodied energy (MJ/kg)</th><th>Carbon footprint (kg/kg)</th></tr> </thead> <tbody> <tr> <td>Standard Concrete</td><td>2400</td><td>1.14</td><td>0.1</td></tr> <tr> <td>Steel (100% Recycled)</td><td>7850</td><td>7.3</td><td>0.57</td></tr> <tr> <td>Insulation fiber glass</td><td>32</td><td>30.3</td><td>2.1</td></tr> <tr> <td>Plywood</td><td>600</td><td>10.4</td><td>0.8</td></tr> </tbody> </table>	Material	Density (kg/m3)	Embodied energy (MJ/kg)	Carbon footprint (kg/kg)	Standard Concrete	2400	1.14	0.1	Steel (100% Recycled)	7850	7.3	0.57	Insulation fiber glass	32	30.3	2.1	Plywood	600	10.4	0.8			
Material	Density (kg/m3)	Embodied energy (MJ/kg)	Carbon footprint (kg/kg)																						
Standard Concrete	2400	1.14	0.1																						
Steel (100% Recycled)	7850	7.3	0.57																						
Insulation fiber glass	32	30.3	2.1																						
Plywood	600	10.4	0.8																						
		UNIT - IV																							
7	a)	Discuss different components of Lifecycle assessment (LCA) with the help of a flow chart. Explain the benefits and limitations of LCA.	CO3	PO6, PO7	10																				
	b)	Illustrate (i) Process based analysis, (ii) input-output analysis and (iii) hybrid analysis in performing Lifecycle assessment.	CO3	PO6, PO7	10																				

			OR																																	
	8	a)	Explain with a neat sketch the different type of boundary conditions used in performing LCA.	CO3	PO6, PO7	10																														
		b)	With the help of a flow chart explain Life Cycle Inventory (LCI) analysis and factors influencing LCI.	CO3	PO6, PO7	10																														
			UNIT - V																																	
	9	a)	What is Life Cycle Impact Assessment? Discuss the benefits and limitations of conventional and non-conventional sources of energy.	CO3	PO6, PO7	10																														
		b)	Illustrate the process of interpretation and decision making for different set of alternatives.	CO3	PO6, PO7	10																														
			OR																																	
	10	a)	A manufacturing industry has four stages in product manufacturing as shown in the Figure Q 10(a) below. The released environmental burdens are indicated in Table Q10 (a). Table Q10(b) shows the classification factors for different impact categories. Evaluate the environmental impact categories of global warming and acidification due to the burdens.	CO3	PO6, PO7	10																														
			Figure Q 10(a)																																	
			Table Q10 (a): Released environmental burdens																																	
			<table border="1"> <thead> <tr> <th>Stage</th> <th>Energy/mass flow (x) (t/tFU)</th> <th>CO₂ (kg/t)</th> <th>CH₄ (kg/t)</th> <th>SO₂ (kg/t)</th> <th>NO_x (kg/t)</th> </tr> </thead> <tbody> <tr> <td>X1</td> <td>4.5</td> <td>0.6</td> <td>0.21</td> <td>0.04</td> <td>0.02</td> </tr> <tr> <td>X2</td> <td>3.6</td> <td>0.7</td> <td>0.25</td> <td>0.05</td> <td>0.02</td> </tr> <tr> <td>X3</td> <td>2.8</td> <td>0.5</td> <td>0.22</td> <td>0.03</td> <td>0.01</td> </tr> <tr> <td>X4</td> <td>2.2</td> <td>0.3</td> <td>0.15</td> <td>0.001</td> <td>0.000</td> </tr> </tbody> </table>	Stage	Energy/mass flow (x) (t/tFU)	CO ₂ (kg/t)	CH ₄ (kg/t)	SO ₂ (kg/t)	NO _x (kg/t)	X1	4.5	0.6	0.21	0.04	0.02	X2	3.6	0.7	0.25	0.05	0.02	X3	2.8	0.5	0.22	0.03	0.01	X4	2.2	0.3	0.15	0.001	0.000			
Stage	Energy/mass flow (x) (t/tFU)	CO ₂ (kg/t)	CH ₄ (kg/t)	SO ₂ (kg/t)	NO _x (kg/t)																															
X1	4.5	0.6	0.21	0.04	0.02																															
X2	3.6	0.7	0.25	0.05	0.02																															
X3	2.8	0.5	0.22	0.03	0.01																															
X4	2.2	0.3	0.15	0.001	0.000																															
			Table Q10 (b): Impact categories for burdens																																	
			<table border="1"> <thead> <tr> <th rowspan="2">Impact categories ↓ Burdens</th> <th colspan="2">Global warming factor</th> <th>Acidification factor</th> </tr> </thead> <tbody> <tr> <td>CO₂</td> <td>1</td> <td>-</td> </tr> <tr> <td>CH₄</td> <td>21</td> <td>-</td> </tr> <tr> <td>SO₂</td> <td>-</td> <td>1</td> </tr> <tr> <td>NO_x</td> <td>-</td> <td>0.7</td> </tr> </tbody> </table>	Impact categories ↓ Burdens	Global warming factor		Acidification factor	CO ₂	1	-	CH ₄	21	-	SO ₂	-	1	NO _x	-	0.7																	
Impact categories ↓ Burdens	Global warming factor		Acidification factor																																	
	CO ₂	1	-																																	
CH ₄	21	-																																		
SO ₂	-	1																																		
NO _x	-	0.7																																		
		b)	Discuss different methods of waste management for the sustainable development	CO3	PO6, PO7	10																														