

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: AI&DS, CSE(Data Science) and CSE(IOT & Cyber Security Including BlockChain)

Duration: 3 hrs.

Course Code: 23JC4PCCNW / 23DS4PCCON

Max Marks: 100

Course: Computer Networks

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

	c)	What is the Vulnerable time for pure ALOHA. A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is the throughput if the system produces 1000 frames per second?	CO2	PO2	06
		UNIT - III			
5	a)	Describe the general structure of an ICMP message. Explain the different ICMP error-reporting messages and query messages. Provide examples of each.	CO2	PO2	10
	b)	Design distance vector routing algorithm to handle count to infinity problem in routing protocols and discuss possible solutions to this problem.	CO3	PO3	10
		OR			
6	a)	Illustrate Routing Information Protocol (RIP) with its message format.	CO2	PO2	10
	b)	With neat diagram explain in detail IPv6 datagram format with its extension headers. Mention the significance of each field.	CO1	PO1	10
		UNIT - IV			
7	a)	Describe the various fields of the UDP segment. Explain how checksum is calculated.	CO2	PO2	10
	b)	Design a protocol with concept of Go Back N ARQ protocol. Explain the send and receive window in detail.	CO3	PO3	10
		OR			
8	a)	Draw UDP datagram packet format. Elaborate on UDP services and applications. Obtain the following for the content of UDP header in hexadecimal format. BA670D0C0010E217 i. Source port number ii. Destination port number iii. Total length of the user datagram iv. Length of the data	CO2	PO2	10
	b)	Explain three-way handshake mechanism for TCP connection establishment. If the TCP round-trip time, RTT, is currently 30 msec and the following acknowledgements come in after 26, 32, and 24 msec, respectively, what is the new SRTT estimate using the Jacobson algorithm? Use $\alpha=0.9$.	CO3	PO3	10
		UNIT - V			
9	a)	Explain the two primary methods used by DNS servers to resolve domain name queries. Illustrate your answer with examples and diagrams where necessary.	CO1	PO1	10
	b)	Explain SNMP concept. Describe the three components of SNMP architecture. How do these components interact with each other?	CO1	PO1	10

OR					
10	a)	With a neat diagram discuss various application layer paradigms. Mention their advantages and disadvantages.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain how SMTP operates when A sends mail to B where mail servers of A and B are different with a neat diagram. Show the sequence of events.	<i>CO2</i>	<i>PO2</i>	10

B.M.S.C.E. - ODD SEM 2024-25