

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: AI & DS / CSE(DS)/ CSE(IOT)

Duration: 3 hrs.

Course Code: 23DS4PCCON / 23IC4PCCNW

Max Marks: 100

Course: Computer Networks

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	With a neat diagram explain TCP/IP reference model.						
	b)	Explain Time Division Multiplexing with a neat diagram. Ten sources, six with a bit rate of 200 kbps and four with a bit rate of 400 kbps are to be combined using multilevel TDM with no synchronizing bits. Answer the following questions about the final stage of the multiplexing: i) What is the size of a frame in bits? ii) What is the frame rate? iii) What is the duration of a frame? iv) What is the data rate?				CO3	PO3	10
OR								
2	a)	What are Circuit Switched Networks. With proper diagram, explain the phases of Circuit Switched Networks				CO1	PO1	10
	b)	Discuss Multi transition: MLT-3 in detail. Develop the line code for the sequence 01001110 using Unipolar NRZ, NRZ-L, NRZ-I, RZ, AMI, and Manchester encoding schemes.				CO3	PO3	10
UNIT - II								
3	a)	With a neat diagram specify the design of CRC encoder and decoder. A bit stream 10011101 is transmitted using the standard CRC method. The generator polynomial is x^3+1 . i) What is the actual bit string transmitted? ii) Suppose the third bit from the left (ie.10 <u>1</u> 11101...) is inverted during transmission. How will receiver detect this error?				CO3	PO3	10
	b)	Correlate and analyse the working of CDMA (Code Division Multiple Access) technique with the TDMA.				CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>Alice and Bob are experimenting with CDMA using W2 Walsh table. Alice uses the code $[+1, +1]$ and Bob uses the code $[+1, -1]$. Assume they simultaneously send a binary digit to each other. Alice sends bit 0, and Bob sends bit 1, show how they can detect what the other person has sent.</p>			
		OR			
4	a)	<p>Explain CSMA and its persistent methods with neat diagrams. A pure ALOHA network transmits 350-bit frames on a shared channel of 350 kbps. It is required to design ALOHA network to produce the throughput for :</p> <ul style="list-style-type: none"> i) 1250 frames per second ii) 700 frames per second iii) For 300 frames per second, compute throughput for slotted ALOHA with same specifications 	CO3	PO3	10
	b)	<p>Demonstrate Byte stuffing and unstuffing in a character-oriented protocol with an example. Apply stuffing strategies as per the given requirements in the following:</p> <ul style="list-style-type: none"> i) Byte-stuff the following frame payload in which E is the escape byte, F is the flag byte, and D is a data byte other than an escape or a flag character. Payload is DEDD FDDE EDFD ii) Bit-stuff the following frame payload: 0001 1111 1100 1111 1010 0011 1111 1111 1000 0111 	CO2	PO2	10
		UNIT - III			
5	a)	<p>Identify the benefits of IPv6 over IPv4? Expand the following addresses to its original form.</p> <ul style="list-style-type: none"> i) 0:15::1:12:1213 ii) 0:0B0E::12DF iii) 2001:EC6::EF9A:0:0 iv) 2001:CB:5:38AF:953E:0:EF00:E2 	CO2	PO2	10
	b)	<p>Design a company network which consists of 4 departments connected. Perform subnetting to divide the network into four equal parts. The host IP address to be assumed is 192.168.1.0/24. For each of these subnetworks give the network address, broadcast address, first IP address assigned, the last IP address assigned and the subnet mask and CIDR.</p>	CO3	PO3	10
		OR			

	6	a)	<p>Explain IPv4 header format with a neat diagram. The following is the content of an IPv4 header (first 20 bytes) represented in hexadecimal format: 4500003C1C4640004006B1E6C0A80001C0A800C7.</p> <ol style="list-style-type: none"> What is the version and header length? What is the total length of the IP packet? What is the protocol field indicating? What is the header checksum value? 	CO2	PO2	10
		b)	<p>Write Dijkstra algorithm for Link-State (LS) Routing protocol. Apply LS routing for the below given graph.</p>	CO3	PO3	10
UNIT - IV						
	7	a)	With a neat sketch explain the TCP segment header.	CO1	PO1	08
		b)	Explain the three way hand shake for establishing a TCP Connection.	CO1	PO1	08
		c)	Silly window syndrome causes serious issues in communication between the sender and the receiver. Justify.	CO2	PO2	04
OR						
	8	a)	Discuss about the UDP user datagram and header format with neat figures.	CO1	PO1	08
		b)	<p>Mention the drawbacks of Stop and wait and Go-back N protocols.</p> <p>Explain how Selective Repeat protocol is efficient with its working.</p>	CO1	PO1	08
		c)	<p>Consider the following two cases,</p> <p>(i) Window Size = 2^{m-1} and</p> <p>(ii) Window Size $> 2^{m-1}$.</p> <p>Analyze the cases and justify which of the two best suits the Selective Repeat ARQ. Support your answer with a figure.</p>	CO2	PO2	04
UNIT - V						
	9	a)	List the three domains of Domain Name Space and explain them choosing necessary diagram or an illustration.	CO1	PO1	08
		b)	Analyze the need of two port numbers in FTP protocol.	CO2	PO2	04

		c)	Explain SNMP concept. Describe the three components of SNMP architecture.	CO1	PO1	08
			OR			
	10	a)	Explain DNS message format.	CO1	PO1	08
		b)	Analyze why SMTP uses a push-based protocol instead of a pull-based protocol. How does this design choice impact the way email is delivered and retrieved by users?	CO2	PO2	04
		c)	Explain how SMTP operates when A sends email to B where mail server of A and B are different with a neat diagram. Show the sequence of events.	CO1	PO1	08

B.M.S.C.E. - EVEN SEM 2024-25