

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: CSE (ICB) / CSE(DS) / AI&DS

Course Code: 23DC3ESCOA

Course: Computer Organization and Architecture

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Identify different functional units of a Digital Computer and explain with a neat diagram.	<i>CO1</i>	<i>PO1</i>	06
	b)	Utilizing the connection between processor and memory, explain basic operational concepts.	<i>CO1</i>	<i>PO1</i>	07
	c)	With neat representation explain Little-Endian and Big-Endian schemes.	<i>CO1</i>	<i>PO1</i>	07
UNIT - II					
2	a)	Illustrates how the keyboard and display devices are connected to the processor with neat diagram.	<i>CO1</i>	<i>PO1</i>	10
	b)	Construct an I/O interface for an input device and explain	<i>CO1</i>	<i>PO1</i>	10
UNIT - III					
3	a)	Construct internal organization of a 32M x 8 dynamic memory Chip	<i>CO3</i>	<i>PO3</i>	10
	b)	What is the necessity of DMA? Explain DMA and possible registers used in DMA interface.	<i>CO3</i>	<i>PO3</i>	10
OR					
4	a)	Identify and explain the 3 different Memory mapping functions	<i>CO3</i>	<i>PO3</i>	10
	b)	With a neat diagram explain Virtual Memory address translation	<i>CO3</i>	<i>PO3</i>	10
UNIT - IV					
5	a)	Design 4-bit carry-look ahead adder circuit	<i>CO3</i>	<i>PO3</i>	10
	b)	Explain sequential circuit binary multiplier with a neat block diagram and an example.	<i>CO3</i>	<i>PO3</i>	10
OR					
6	a)	Consider M=13 and Q= -6, solve using bit pair recoding multiplier method. Also show multiplicand selection decision table.	<i>CO3</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Illustrate restoring and non restoring division with suitable examples	CO3	PO3	10
		UNIT - V			
7	a)	With a neat diagram, demonstrate the working of hardwired control.	CO2	PO2	08
	b)	List the steps needed to execute the instruction Load R5, X(R7)	CO2	PO2	06
	c)	Elucidate the four phases in the evolution of microprocessor design.	CO2	PO2	06

SUPPLEMENTARY EXAMS 2024