

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: CSE (ICB) / CSE(DS) / AI&DS

Duration: 3 hrs.

Course Code: 23DC3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Elucidate the functional units of a computer with a neat diagram.	CO1	PO1	06
		b)	You are a computer architect working on designing a new processor for a cutting-edge computer system. Your team is discussing the various addressing modes that the processor should support to enhance its versatility. Illustrate the various addressing modes with example code.	CO2	PO2	07
		c)	With a neat diagram, explain the processor memory interface and the various types of registers associated with it.	CO1	PO1	07
			UNIT - II			
	2	a)	Write an assembly program to add 'N' numbers and store the final answer in a register.	CO3	PO3	06
		b)	With a neat diagram, explain the working of interrupts.	CO1	PO1	07
		c)	Illustrate the bus arbitration process by considering the case where a single bus is the shared resource.	CO2	PO2	07
			UNIT - III			
	3	a)	Construct a block diagram and explain the organization of bit cells in Memory Chips.	CO1	PO1	07
		b)	Outline the significance of registers used in the DMA Controller to carry out the transfer of data block directly between the external device and main memory.	CO1	PO1	08
		c)	Given an 8-bit binary number- 10101101, Perform the following operations where shift size=3: i)Logical Shift Left ii) Arithmetic Shift Right iii) Arithmetic Shift Left iv) Logical Shift Right v) Rotate Right with Carry	CO3	PO3	05

OR					
4	a)	Considering the hierarchical nature of memory, analyze your strategy for minimizing data movement between different levels of the memory hierarchy to reduce latency and improve overall system performance.	CO2	PO2	06
	b)	Discuss the Translation Lookaside Buffer (TLB) and its importance in speeding up the address translation process.	CO1	PO1	07
	c)	Design a $2M \times 32$ memory module using $512K \times 8$ static memory chips.	CO3	PO3	07
UNIT - IV					
5	a)	Multiply 42(multiplicand) with 63(multiplier) using the 3-2 carry-save reducers method.	CO1	PO1	08
	b)	Apply Booth's algorithm to multiply the following pair of numbers A=+19 B= +12	CO1	PO1	06
	c)	Apply Bit Pair Recoding algorithm to multiply M(multiplicand)=+13 and Q(multiplier)=-6	CO1	PO1	06
OR					
6	a)	Illustrate the workings of a sequential circuit multiplier with a diagram.	CO1	PO1	06
	b)	Given the Dividend X = 17 and Divisor Y = 3, Solve the given problem using Non-Restoring Division.	CO2	PO2	07
	c)	Design and describe the working of a 4-bit carry look-ahead adder.	CO3	PO3	07
UNIT - V					
7	a)	Demonstrate the working of hardwired control organization with a schematic diagram.	CO1	PO1	06
	b)	Give a detailed description for Flynn's taxonomy of Parallel Architecture.	CO1	PO1	06
	c)	Elaborate on the data path organization in a computer with relevant diagrams.	CO1	PO1	08
