

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: CSE(DS)/AI & DS/CSE(IoT)

Duration: 3 hrs.

Course Code: 23DC3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe with a diagram the basic operational units present in the connection between processor and main memory. What is the role played by the processor interface in the transfer of data?	CO1	PO1	7
		b)	Analyze the basic operational steps involved in executing the below instructions: i) Store R5, NUM ii) Add R5, R4, R3 Outline the operation of MAR and MDR.	CO2	PO2	7
		c)	Perform binary addition and subtraction for operands -6 & -5. Also state the overflow condition.	CO1	PO1	6
OR						
2	a)	Discuss the big-endian and little-endian byte addressing scheme with neat diagram.	CO1	PO1	7	
	b)	Identify and explain the addressing mode used in the below instructions. i) Add R1, R2, R3 ii) Load R2, 5000(R3) iii) DIV R5, R4, #10 iv) Load R2, (R5) v) Integer X, Y, SUM vi) Branch_if_[R2]>0 Identify the data structures that can be used for organizing the data used in computations.	CO2	PO2	7	
	c)	Write an assembly program for the following Fibonacci sequence 0, 1, 1, 2, 3, 5 and store the final result in a register	CO1	PO1	6	

UNIT - II					
3	a)	Define Memory Mapped I/O. Demonstrate the process that takes place when moving a character from the keyboard to the processor and from processor to display.	CO1	PO1	10
	b)	Consider a scenario when two or more devices contend to access a shared resource such as a bus. Discuss the approach that could provide orderly access to the shared resource.	CO2	PO2	10
OR					
4	a)	i) Explain push and pop operation in stacks with suitable code snippet in assembly program. ii) It is often necessary to perform a particular task many times on different data values. Elaborate on how would you implement this task with suitable registers using subroutines.	CO1	PO1	5+5
	b)	Consider a scenario where devices D1 and D2 may request an interrupt at the same time while an interrupt caused by device D3 is being serviced. Illustrate the possible approaches to handle this situation by the processor.	CO2	PO2	10
UNIT - III					
5	a)	Explain with a neat sketch, structure of Synchronous DRAM and its timing diagram for a typical burst read of length 4.	CO1	PO1	10
	b)	You are a computer architect trying to design a cache memory with 128 blocks of 16 words each that can store main memory blocks. Design the different mapping strategies for determining where the memory blocks are placed in the cache.	CO3	PO3	10
OR					
6	a)	Elucidate on virtual memory. Illustrate translation of virtual address to physical address with block diagram.	CO1	PO1	10
	b)	A data intense application requires a direct transfer of large blocks of data at high speed between the external device and the main memory. Demonstrate the technique and registers required to achieve the task.	CO3	PO3	10
UNIT - IV					
7	a)	Design a 4-bit adder using a carry-look ahead logic and derive the generate and propagate functions. Also compare 4-bit adder with the 16-bit adder.	CO3	PO3	10
	b)	i) Apply sequential circuit multiplication for Multiplicand 7 and Multiplier -3.	CO1	PO1	10

		ii) Multiply $A=010111(+23)$ and $B=110110(-10)$ using Booth's bit pair recoding multiplication method.			
OR					
	8	a) Design a carry save array for a $4*4$ multiplier. Demonstrate with an example how Booth's bit pair recoding of multiplier can improve the speed of multiplication?	CO3	PO3	10
		b) Perform restoring and non-restoring division for the given dividend and divisor $A = 1001$ and $B = 0010$	CO1	PO1	10
UNIT - V					
	9	a) Discuss the data path organization in a computer in detail with relevant diagrams.	CO1	PO1	10
		b) With a neat diagram, elucidate Hardwired Control Unit organization.	CO1	PO1	6
		c) Illustrate the sequence of actions needed to fetch and execute the branch instruction with an example.	CO1	PO1	4
OR					
	10	a) Elucidate the four phases in the evolution of microprocessor design, and how has the internal use of parallelism influenced each of these phases?	CO1	PO1	10
		b) Outline Flynn's classification of parallel architecture.	CO1	PO1	6
		c) Write a note on thread level parallelism.	CO1	PO1	4
