

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: CSE(DS),/CSE(ICB) /AI & DS

Course Code: 23DC3PCDBM

Course: Database Management System

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	With a neat diagram explain the 3-schema architecture of database approach.	<i>CO1</i>	<i>PO1</i>	07
	b)	As a part of project work, the students of 3 rd semester design the database for their application. Illustrate any four types of constraints that they can specify when tables are created in SQL with syntax, assuming suitable schema.	<i>CO1</i>	<i>PO1</i>	04
	c)	EMPLOYEE (SSN, Name, Address, Gender, Salary, SuperSSN, DNo) DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate, DLoc) PROJECT (PNo, PName, PLocation, DNo) WORKS_ON (SSN, PNo, Hours) For the above given schema, write the SQL query for : 1. Find the resulting salaries if every employee working on the 'IoT' project is given a 15 percent raise 2. Retrieve the average salary for each department whose name starts with CSE 3. Retrieve the department with the highest average salary 4. Retrieve the departments where the number of employees exceeds the average number of employees across all departments 5. Retrieve the employee(s) who have been with the company the longest 6. Retrieve the employees who have a manager and display their manager's name	<i>CO3</i>	<i>PO3</i>	09
UNIT - II					
2	a)	Explain the following terms: a) Schema b) Cardinality Ratio c) Weak Entity d) Domain of an Attribute	<i>CO1</i>	<i>PO1</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Illustrate with a real-world example, the importance of entity and referential integrity constraints to maintain data consistency and reliability of relational databases.	CO2	PO2	06
	c)	<p>Design an ER-diagram for the Bank-database considering the following requirements:</p> <ol style="list-style-type: none"> Each bank has multiple branches with registered customers. Customers maintain account at different branches Each branch offers loans to its customers <p>Is there a weak entity type. If so, give its name, partial key and identifying relationship. Represent the cardinality ratio on each participation of entities in relationship</p>	CO3	PO3	06
		OR			
3	a)	Explain the different types of attributes with their ER notation and an example	CO1	PO1	06
	b)	Elucidate the relational model characteristics that must be considered during database design.	CO2	PO2	08
	c)	Develop a set of guidelines for effectively applying the ER to Relational Mapping Algorithm in database design projects.	CO3	PO3	06
		UNIT - III			
4	a)	<p>Illustrate with appropriate syntax and an example for each relational operations in detail.</p> <ol style="list-style-type: none"> PROJECT JOIN INTERSECTION MINUS EQUIJOIN 	CO1	PO1	10
	b)	<ol style="list-style-type: none"> Find the candidate keys present in given relation R (A, B, C, D) and Functional dependency $\{AB \rightarrow CD, D \rightarrow B, C \rightarrow A\}$ and justify your answer. For the relation R(A B C D), find closure of A^+ , given $\{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ and justify your answer. 	CO2	PO2	10
		OR			
5	a)	Explain Functional dependencies with a suitable example. List and explain the inference rules of functional dependency.	CO1	PO1	10
	b)	Define Normalization. Explain multivalve dependency and fourth and fifth normal form, with an example	CO1	PO1	10
		UNIT - IV			
6	a)	Draw a state transition diagram and illustrate the states for transaction execution.	CO1	PO1	06
	b)	Explain Two Phase Locking Protocol for concurrency control. What are its disadvantages?	CO1	PO1	08
	c)	Determine if the below given two bank transaction sequence lead to deadlocked situation and justify using wait for graph technique.	CO2	PO2	06

		<table border="1"> <thead> <tr> <th>T1</th><th>T2</th></tr> </thead> <tbody> <tr> <td>lock-X(A)</td><td>lock-X(A)</td></tr> <tr> <td>read(A)</td><td>lock-X(B)</td></tr> <tr> <td>A=A-5000</td><td>lock-X(C)</td></tr> <tr> <td>write(A)</td><td>....</td></tr> <tr> <td>lock-X(B)</td><td>read(A)</td></tr> <tr> <td>read(B)</td><td>A=A+(A*0.25)</td></tr> <tr> <td>B=B+5000</td><td>write(A)</td></tr> <tr> <td>write(B)</td><td>....</td></tr> <tr> <td>commit</td><td>commit</td></tr> </tbody> </table>	T1	T2	lock-X(A)	lock-X(A)	read(A)	lock-X(B)	A=A-5000	lock-X(C)	write(A)	lock-X(B)	read(A)	read(B)	A=A+(A*0.25)	B=B+5000	write(A)	write(B)	commit	commit			
T1	T2																								
lock-X(A)	lock-X(A)																								
read(A)	lock-X(B)																								
A=A-5000	lock-X(C)																								
write(A)																								
lock-X(B)	read(A)																								
read(B)	A=A+(A*0.25)																								
B=B+5000	write(A)																								
write(B)																								
commit	commit																								
UNIT - V																									
7	a)	Demonstrate the different RAID techniques and RAID Levels that an organization can leverage to meet their storage solutions.	COI	POI	10																				
	b)	Define indexing. Explain primary and secondary indexing of records.	COI	POI	10																				
