

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

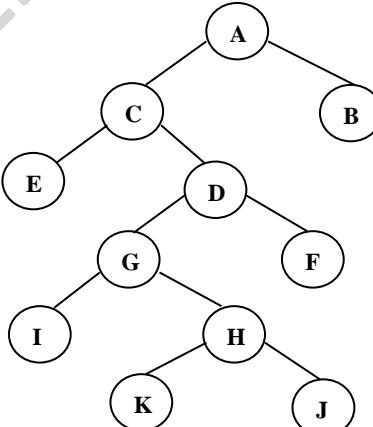
October 2024 Supplementary Examinations

Programme: B.E.

Branch: CSE(ICB)/CSE(DS)/AI&DS

Course Code: 23DC3PCDSC

Course: Data Structures


Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With general syntax, explain the purpose of realloc() function in C. Develop a function to allocate memory space dynamically to store the string “BMSCE” and then resize the memory to store the string “B.M.S COLLEGE OF ENGINEERING”.	CO1	PO1	10
		b)	Differentiate linear and non-linear data structures with an example for each.	CO1	PO1	4
		c)	Write a C function that reads and stores the details of 100 students like student id, name, marks for three subjects into a structure and prints the total marks scored by each student.	CO3	PO3	6
			UNIT - II			
	2	a)	A node in a Singly Linked List contains the following information with respect to a faculty: name, years of experience. Develop C functions to perform the following operations on this list: i) Add a faculty at the beginning of the list. ii) Display the details of only those faculty members who have more than 10 years of teaching experience. iii) Search for a given faculty name.	CO3	PO3	10
		b)	Differentiate singly linked list and circular singly linked list with an example for each.	CO2	PO2	4
		c)	Write a C function to insert an integer element at a given position in a doubly linked list.	CO3	PO3	6
			OR			
	3	a)	Differentiate doubly linked list and circular singly linked list with an example for each.	CO1	PO1	4
		b)	Write a C function to read and store n strings into a singly linked list and search for the existence of a given string. If the string is present, replace the string with its reverse, Otherwise print an appropriate message.	CO3	PO3	10
		c)	Design a C routine to delete middle node in a circular linked list	CO3	PO3	6

UNIT - III						
4	a)	Develop a C function to read n integers into an array and reverse the array using Stack. Display the contents of the array with suitable messages.	<i>CO3</i>	<i>PO3</i>	6	
	b)	Identify limitations of a Simple queue when implemented using an array. Discuss possible ways to overcome this limitation. Write the Pseudocode or C routines for the primitive operations on this alternate queue implementation.	<i>CO2</i>	<i>PO2</i>	8	
	c)	Write a C function to evaluate a given postfix expression using stacks.	<i>CO1</i>	<i>PO1</i>	6	
UNIT - IV						
5	a)	Design a recursive routine to calculate height of a binary tree.	<i>CO1</i>	<i>PO1</i>	6	
	b)	Develop C functions to perform the following operations on a Binary Search Tree(BST) <ol style="list-style-type: none"> Display the information of the BST in ascending order. Delete the given key element, if present in the BST. 	<i>CO2</i>	<i>PO2</i>	8	
	c)	Construct the Binary Search Tree for the following data entered as a sequential set (Do not enter the data if the data already exist in BST). Write the in-order and pre-order tree traversals on the BST constructed.	<i>CO2</i>	<i>PO2</i>	6	
Data: E, N, G, I, N, E, E, R, I, N, G						
OR						
6	a)	Define Binary search Tree. Develop recursive C functions to perform the following operations on BST. <ol style="list-style-type: none"> Traverse the Binary Tree in Post-order. Count the number of nodes. Print the values of BST in the descending order. 	<i>CO2</i>	<i>PO2</i>	9	
	b)	Consider the following Binary tree and answer the questions given: <ol style="list-style-type: none"> Find the Inorder Successor of node G Find the Postorder predecessor of node K Find the sibling of D 	<i>CO2</i>	<i>PO2</i>	5	
	c)	Given the following Inorder and Postorder traversals, construct the binary tree:	<i>CO2</i>	<i>PO2</i>	6	

		Inorder: ECIGKHJDFAB Postorder: EIKJHGFGCBA			
		UNIT - V			
7	a)	What are Red-Black Trees? Mention the rules that every Red-Black tree should follow. Also, compare AVL trees and Red-Black trees.	<i>CO1</i>	<i>PO1</i>	8
	b)	Explain the different rotations performed in AVL trees.	<i>CO1</i>	<i>PO1</i>	6
	c)	Insert the following values sequentially into an initially empty Splay tree: 32,45,22,56,10,50	<i>CO1</i>	<i>PO1</i>	6

SUPPLEMENTARY EXAMS 2024