

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: CSE (IoT)/AI&DS/CSE(DS)

Duration: 3 hrs.

Course Code: 23DC3PCDSC

Max Marks: 100

Course: Data Structures

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	What is data structure? Explain different types of data structures with example.	CO1	PO1	07
	b)	What is pointer? Predict the output for the following snippet and justify the answer. int* pc, c; c = 5; pc = &c; c = 1; printf("%d", c); printf("%d", *pc);	CO1	PO1	06
	c)	Define structure. Explain nested structure with example.	CO1	PO1	07
OR					
2	a)	Which is advantageous dynamic memory allocation or static memory allocation? Justify your answer.	CO1	PO1	05
	b)	Develop a structure to represent the planets in the solar system. Each planet has fields for the planet's name, its distance from the sun (in miles), and the number of moons it has. Write a program to read the data for each planet and store it. Also, print the name of the planet that has the highest number of moons.	CO2	PO2	10
	c)	Considering details of books and its authors as an example, explain structures, nested structures and self-referential structures.	CO2	PO2	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – II					
3	a)	Assume a four node SLL with 15, 25, 40 and 50 data. Write C function to perform the following: i. Insert a node with data value 30 in between the nodes 25 and 40. ii. Delete a node with data value 40.	CO2	PO2	10
	b)	Write a program to input an n digit number. Now, break this number into its individual digits and then store every single digit in a separate node thereby forming a linked list. Then delete a node with data 5, if list contains.	CO2	PO2	10
OR					
4	a)	Develop a C function to add two polynomials using circular singly linked list with header node.	CO2	PO2	10
	b)	Implement string palindrome using doubly linked list.	CO2	PO2	10
UNIT – III					
5	a)	Convert the following infix expression into postfix expression using stack trace : $A - (B / C + (D \% E + F) / G)^* H$	CO2	PO2	07
	b)	Draw the stack structure in each case when the following operations are performed on an empty stack. Assume size of the stack is 5. (i) Add A, B, C, D, E, F (ii) Delete two letters (iii) Add G (iv) Add H (v) Delete four letters (vi) Add I	CO3	PO3	06
	c)	Differentiate between an iterative function and a recursive function. Which one will you prefer to use and in what circumstances?	CO3	PO3	07
OR					
6	a)	Write a program to create a queue which permits insertion at any vacant location at the rear end.	CO3	PO3	07
	b)	Draw the queue structure in each case when the following operations are performed on an empty queue. Assume size of the queue is 5. (i) Add A, B, C, D, E, F (ii) Delete two letters (iii) Add G (iv) Add H (v) Delete four letters (vi) Add I	CO3	PO3	06
	c)	Write a program to reverse the elements of a queue.	CO3	PO3	07
UNIT - IV					
7	a)	Implement the following operations on a Binary tree:	CO1	PO1	08

		<p>i) Postorder traversal ii) Count the number of leaf nodes Calculate the height of the tree</p>			
	b)	Construct Binary Search Tree whose preorder traversal is 14, 27, 24, 34, 29, 44, 54, 69, 59, 49, 39.	CO2	PO2	06
	c)	Employee details are stored in a Binary Search Tree. Assuming the insertions are based on the Salary field, design a routine to print the details of the employee with the highest salary.	CO1	PO1	06
		OR			
	8	a) Explain different ways of representing binary trees in the memory. Which one do you prefer and why?	CO1	PO1	06
		b) Write a C function to delete a node from binary search tree.	CO3	PO3	08
		c) Construct the Binary tree whose traversals are as given below: Inorder: G D H B E A C F Preorder: A B D G H E C F	CO2	PO2	06
		UNIT – V			
	9	a) Construct an AVL tree by inserting the following elements in the given order. 63, 9, 19, 27, 18, 108, 99, 81.	CO4	PO3	10
		b) Explain splay trees in detail with relevant examples.	CO4	PO3	05
		c) Draw all possible binary search trees of 7, 9, and 11.	CO4	PO3	05
		OR			
	10	a) Discuss the properties of a red-black tree. Explain the insertion cases.	CO4	PO3	10
	b)	Derive the resulting splay tree after searching for the values 38 and 92 successively on the below splay tree:	CO1	PO1	05
		<pre> graph TD 90((90)) --- 50((50)) 90 --- 95((95)) 50 --- 38((38)) 95 --- 92((92)) 95 --- 99((99)) </pre>			
	c)	Describe the properties of a Red Black tree with an example Red black Tree with at least 6 nodes.	CO2	PO2	05
