

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: AI&DS/CSE(IOT)/CSE(DS)

Course Code: 23DC4PCOPS

Course: Operating Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the abstract view of the components of a computer system. Draw a neat labeled diagram showing the interaction among hardware, system software, application programs, and users		<i>CO1</i>	<i>PO1</i>	10
		b)	Describe the interrupt-driven I/O cycle in detail, including all the steps involved and how it improves efficiency over polling. Support your explanation with a diagram		<i>CO1</i>	<i>PO1</i>	10
OR							
	2	a)	Identify and explain the various operating system services, such as process management, memory management, file systems, and device management. Illustrate your answer with a diagram showing how these services interact within the system		<i>CO2</i>	<i>PO2</i>	10
		b)	Elaborate on the process of transitioning from user mode to kernel mode in an operating system. Use a diagram to illustrate the flow		<i>CO2</i>	<i>PO2</i>	10
			UNIT - II				
	3	a)	Compare and contrast mutex locks and semaphores with examples.		<i>CO2</i>	<i>PO2</i>	05
		b)	List the key components of a Process Control Block (PCB) and represent them using a neat labeled diagram		<i>CO2</i>	<i>PO2</i>	05
		c)	Demonstrate a race condition in the assignment of a process ID (PID) in a multi process system, explaining the potential issues it can cause. Support your answer with a neat and well-labeled diagram showing concurrent access.		<i>CO2</i>	<i>PO2</i>	10

		OR																											
4	a)	Implement a small program that uses semaphores to manage the synchronization of multiple threads, demonstrating the use of sem wait() and sem signal() for mutual exclusion and signaling	CO2	PO2	10																								
	b)	Differentiate data parallelism and task parallelism, explaining how each approach handles computation in parallel.	CO2	PO2	10																								
		UNIT - III																											
5	a)	Based on the results of CPU scheduling, discuss the impact of different time quantum values in the Round Robin scheduling algorithm. How does the time quantum influence the <i>Average Waiting Time (AWT)</i> and <i>Average Turnaround Time (ATT)</i> ? Apply this to the following process set with time quantum = 2 ms and 5 ms:	CO2	PO2	10																								
	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr style="background-color: #00FFFF;"> <th style="text-align: center;">Process</th> <th style="text-align: center;">Burst Time(ms)</th> <th style="text-align: center;">Arrival Time(ms)</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">P1</td><td style="text-align: center;">4</td><td style="text-align: center;">0</td></tr> <tr> <td style="text-align: center;">P2</td><td style="text-align: center;">5</td><td style="text-align: center;">2</td></tr> <tr> <td style="text-align: center;">P3</td><td style="text-align: center;">4</td><td style="text-align: center;">4</td></tr> <tr> <td style="text-align: center;">P4</td><td style="text-align: center;">2</td><td style="text-align: center;">6</td></tr> <tr> <td style="text-align: center;">P5</td><td style="text-align: center;">3</td><td style="text-align: center;">7</td></tr> </tbody> </table>					Process	Burst Time(ms)	Arrival Time(ms)	P1	4	0	P2	5	2	P3	4	4	P4	2	6	P5	3	7						
Process	Burst Time(ms)	Arrival Time(ms)																											
P1	4	0																											
P2	5	2																											
P3	4	4																											
P4	2	6																											
P5	3	7																											
	b)	Consider the following snapshot of a system:	CO3	PO3	10																								
	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr style="background-color: #00FFFF;"> <th style="text-align: center;">Process</th> <th style="text-align: center;">Allocation (A,B,C)</th> <th style="text-align: center;">Max (A,B,C)</th> <th style="text-align: center;">Available (A,B,C)</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">T0</td><td style="text-align: center;">112</td><td style="text-align: center;">212</td><td style="text-align: center;">220</td></tr> <tr> <td style="text-align: center;">T1</td><td style="text-align: center;">201</td><td style="text-align: center;">212</td><td></td></tr> <tr> <td style="text-align: center;">T2</td><td style="text-align: center;">221</td><td style="text-align: center;">321</td><td></td></tr> <tr> <td style="text-align: center;">T3</td><td style="text-align: center;">100</td><td style="text-align: center;">221</td><td></td></tr> <tr> <td style="text-align: center;">T4</td><td style="text-align: center;">200</td><td style="text-align: center;">201</td><td></td></tr> </tbody> </table>					Process	Allocation (A,B,C)	Max (A,B,C)	Available (A,B,C)	T0	112	212	220	T1	201	212		T2	221	321		T3	100	221		T4	200	201	
Process	Allocation (A,B,C)	Max (A,B,C)	Available (A,B,C)																										
T0	112	212	220																										
T1	201	212																											
T2	221	321																											
T3	100	221																											
T4	200	201																											
	<p>Answer the following questions using the Banker's Algorithm:</p> <ol style="list-style-type: none"> What is the content of the matrix Need? Is the system in a safe state? If Yes, what is the safe sequence? If a request from thread T2 arrives for (1, 0, 1), can the request be granted immediately? If Yes, what is the safe sequence? 																												
		OR																											

	6	a)	<p>Given the following processes with their arrival times, burst times, and priorities:</p> <table border="1"> <thead> <tr> <th>Process</th><th>Arrival Time(ms)</th><th>Burst Time(ms)</th><th>Priority (1 Highest)</th></tr> </thead> <tbody> <tr> <td>P1</td><td>0</td><td>3</td><td>3</td></tr> <tr> <td>P2</td><td>1</td><td>2</td><td>2</td></tr> <tr> <td>P3</td><td>3</td><td>5</td><td>1</td></tr> <tr> <td>P4</td><td>5</td><td>2</td><td>4</td></tr> <tr> <td>P5</td><td>8</td><td>1</td><td>2</td></tr> </tbody> </table> <p>Simulate the following CPU scheduling algorithms, draw Gantt charts, and compute the <i>Average Waiting Time (AWT)</i> and <i>Average Turnaround Time (ATT)</i> for each:</p> <ol style="list-style-type: none"> Preemptive Shortest Job First (SJF) (Exclude Priority). Non-Preemptive Priority Scheduling. 	Process	Arrival Time(ms)	Burst Time(ms)	Priority (1 Highest)	P1	0	3	3	P2	1	2	2	P3	3	5	1	P4	5	2	4	P5	8	1	2	CO3	PO3	10
Process	Arrival Time(ms)	Burst Time(ms)	Priority (1 Highest)																											
P1	0	3	3																											
P2	1	2	2																											
P3	3	5	1																											
P4	5	2	4																											
P5	8	1	2																											
	b)		Describe the role of the dispatcher in process scheduling and Discuss the various scheduling criteria for process management. Explain their significance in selecting a suitable scheduling algorithm.	CO2	PO2	10																								
UNIT - IV																														
7	a)		Given a reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 and 4 frames, apply the following algorithms and count the page faults: (a) <i>FIFO</i> (b) <i>Optimal</i> (c) <i>LRU</i> Evaluate which performs best for this string and explain why. Use diagrams to support your explanation.	CO3	PO3	10																								
	b)		With a neat labeled diagram, explain how Hardware support for relocation and limit registers are done in <i>MMU</i> (Memory Management Unit).	CO2	PO2	10																								
OR																														
8	a)		Explain how virtual memory is managed in modern operating systems. Discuss the role of the <i>page table</i> , <i>TLB</i> (<i>Translation Lookaside Buffer</i>) the management of virtual memory. Use diagrams to support your explanation.	CO1	PO1	10																								
	b)		Demonstrate how the next-fit, best-fit, and first-fit algorithms work in dynamic storage allocation. Include a scenario with five memory partitions of sizes 500 KB, 250 KB, 300 KB, 700 KB, and 400 KB, and five processes of sizes 350 KB, 100 KB, 450 KB, 200 KB, and 150 KB. Illustrate your answer with appropriate diagrams.	CO3	PO3	10																								
UNIT - V																														
9	a)		A developer wants to test software across multiple OS environments. Explain how virtual machines enable this and	CO1	PO1	10																								

			what benefits they offer in this context.			
		b)	Explain how protection rings are utilized in virtualization to maintain security and privilege separation.	CO2	PO2	10
			OR			
	10	a)	Differentiate between Type 1 and Type 2 virtual machines using suitable diagrams. Describe their implementations and preferred usage scenarios.	CO2	PO2	10
		b)	Explain the difference between system models of a Non-Virtual Machine and a Virtual Machine using a comparative diagram. Highlight the role of abstraction in each.	CO1	PO1	10

B.M.S.C.E. - EVEN SEM 2024-25