

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

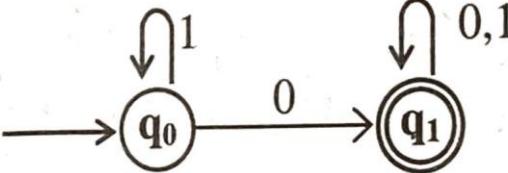
Programme: B.E.

Semester: IV

Branch: CS(ICB)/CS(AIDS)/CS(DS)

Duration: 3 hrs.

Course Code: 23DC4ESTOC


Max Marks: 100

Course: Theory of Computation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Enumerate on i) Strings ii) Language iii) Alphabet iv) Power of an alphabet.	CO1	PO1	04
	b)	Design a DFA with strings of a's and b's ending with 'ab' or 'ba'.	CO3	PO3	08
	c)	Convert the following NFA to equivalent DFA.	CO2	PO2	08
OR					
2	a)	Distinguish between DFA, NFA and ϵ -NFA.	CO1	PO1	04
	b)	Construct a DFA which accepts strings of 0's and 1's where the value of each string is represented as a binary number. Only the strings representing zero modulo five should be accepted.	CO3	PO3	08
	c)	You are developing a part of a network protocol verifier that checks packet IDs encoded as binary strings. A packet ID is valid if it: <ul style="list-style-type: none"> • Contains an even number of 0s • AND ends with a 1 Construct a DFA.	CO3	PO3	08
UNIT - II					
3	a)	Minimize the following DFA.	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <tr><td>δ</td><td>0</td><td>1</td></tr> <tr><td>→A</td><td>B</td><td>E</td></tr> <tr><td>B</td><td>C</td><td>F</td></tr> <tr><td>*C</td><td>D</td><td>H</td></tr> <tr><td>D</td><td>E</td><td>H</td></tr> <tr><td>E</td><td>F</td><td>I</td></tr> <tr><td>*F</td><td>G</td><td>B</td></tr> <tr><td>G</td><td>H</td><td>B</td></tr> <tr><td>H</td><td>I</td><td>C</td></tr> <tr><td>*I</td><td>A</td><td>E</td></tr> </table>	δ	0	1	→A	B	E	B	C	F	*C	D	H	D	E	H	E	F	I	*F	G	B	G	H	B	H	I	C	*I	A	E		
δ	0	1																																
→A	B	E																																
B	C	F																																
*C	D	H																																
D	E	H																																
E	F	I																																
*F	G	B																																
G	H	B																																
H	I	C																																
*I	A	E																																
	b)	i. State and prove Pumping Lemma for regular languages. ii. Show that $L=\{ww^R w \in (0+1)^*\}$ is not regular.	CO1	PO1																														
		OR																																
4	a)	Solve to obtain a Regular Expression from the given Finite State Machine.	CO1	PO1																														
	b)	Obtain Regular Expressions for the following languages: i. $L=\{a^n b^m m \geq 1, n \geq 1, nm \geq 3\}$ ii. $L=\{w : w \bmod 3 = 0 \text{ where } w \in (a,b)^*\}$	CO3	PO3																														
	c)	Prove that $(1+00^*1)+(1+00^*1)(0+10^*1)^* (0+10^*1)$ is equal to $0^*1(0+10^*1)^*$	CO2	PO2																														
		UNIT - III																																
5	a)	Solve to obtain grammar to generate the language $L=\{a^n b^m n \geq 0, m > n\}$	CO3	PO3																														
	b)	Is the following grammar ambiguous? $\begin{aligned} S &\rightarrow aB bA \\ A &\rightarrow aS bAA a \\ B &\rightarrow bS aBB b \end{aligned}$ Consider the string "aaabbabbba"	CO2	PO2																														
	c)	Convert Context-Free Grammar to Chomsky Normal Form $\begin{aligned} S &\rightarrow 0A 1B \\ A &\rightarrow 0AA 1S 1 \\ B &\rightarrow 1BB 0S 0 \end{aligned}$	CO1	PO1																														
		OR																																
6	a)	Obtain a grammar to generate the language $L=\{0^m 1^m 2^n m \geq 1, n \geq 0\}$	CO3	PO3																														
	b)	In programming constructs, an identifier can be a variable name or a function name etc. An identifier is defined as that which starts	CO2	PO2																														

		with a letter and that letter can be followed by any combinations of letters or digits. Design a Context Free Grammar to accept an identifier.			
	c)	Convert Context Free Grammar to Greibach Normal Form. $S \rightarrow ASA aB$ $A \rightarrow B S a$ $B \rightarrow b \epsilon$	CO1	PO1	10
		UNIT - IV			
7	a)	i. Design a PDA for $L = \{a^n, b^{2n} n \geq 1\}$ ii. Write the instantaneous description for the string "aabbbb" Is the PDA of (i) deterministic?	CO3	PO3	10
	b)	For the given grammar obtain PDA <ul style="list-style-type: none"> $S \rightarrow aABB aAA$ $A \rightarrow aBB a$ $B \rightarrow bBB aBB a$ $C \rightarrow a$ 	CO2	PO2	10
		OR			
8	a)	Obtain a PDA to accept the language $L(M) = \{wCw^R w \in (a+b)^*\}$ where w^R is reverse of w .	CO1	PO1	10
	b)	Obtain a CFG from given PDA. <ul style="list-style-type: none"> $\delta(q_0, a, Z) = (q_0, AZ)$ $\delta(q_0, b, A) = (q_0, AA)$ $\delta(q_0, a, A) = (q_1, \epsilon)$ 	CO1	PO1	06
	c)	Show that Context Free Languages are not closed under Intersection	CO2	PO2	04
		UNIT - V			
9	a)	Obtain a TM to accept a string w of a's and b's such that $N_a(w)$ is equal to $N_b(w)$.	CO3	PO3	12
	b)	Deduce how multi-tape and single-tape multi-track Turing Machines are identical.	CO2	PO2	04
	c)	Determine whether a Post Correspondence Solution exists for the following data. $A_1=1, A_2=10111, A_3=10$ $B_1=111, B_2=10, B_3=0$	CO1	PO1	04
		OR			
10	a)	Obtain a TM to multiply two unary numbers separated by a delimiter 1.	CO3	PO3	12
	b)	Design a TM that computes the function <ul style="list-style-type: none"> $f(x, y) = x+y$ if $x \geq y$ $f(x, y) = xx$ if $x < y$ 	CO3	PO3	08