

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: CS-DS / AI-DS / CS-IOT

Course Code: 23DC4ESTOC

Course: Theory of Computation

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																														
1	a)	Enumerate on i) Strings ii) Language iii) Alphabet iv) Power of an alphabet.	<i>CO1</i>	<i>PO1</i>	4																														
	b)	Construct a DFA which accepts strings of 0's and 1's where the value of each string is represented as a binary number. Only the strings representing zero modulo five should be accepted.	<i>CO3</i>	<i>PO3</i>	8																														
	c)	Convert the following NFA to equivalent DFA.	<i>CO2</i>	<i>PO2</i>	8																														
UNIT - II																																			
2	a)	Minimize the following DFA.	<i>CO1</i>	<i>PO1</i>	10																														
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">δ</td><td style="text-align: center;">0</td><td style="text-align: center;">1</td></tr> <tr> <td style="text-align: center;">→A</td><td style="text-align: center;">B</td><td style="text-align: center;">E</td></tr> <tr> <td style="text-align: center;">B</td><td style="text-align: center;">C</td><td style="text-align: center;">F</td></tr> <tr> <td style="text-align: center;">*C</td><td style="text-align: center;">D</td><td style="text-align: center;">H</td></tr> <tr> <td style="text-align: center;">D</td><td style="text-align: center;">E</td><td style="text-align: center;">H</td></tr> <tr> <td style="text-align: center;">E</td><td style="text-align: center;">F</td><td style="text-align: center;">I</td></tr> <tr> <td style="text-align: center;">*F</td><td style="text-align: center;">G</td><td style="text-align: center;">B</td></tr> <tr> <td style="text-align: center;">G</td><td style="text-align: center;">H</td><td style="text-align: center;">B</td></tr> <tr> <td style="text-align: center;">H</td><td style="text-align: center;">I</td><td style="text-align: center;">C</td></tr> <tr> <td style="text-align: center;">*I</td><td style="text-align: center;">A</td><td style="text-align: center;">E</td></tr> </table>	δ	0	1	→A	B	E	B	C	F	*C	D	H	D	E	H	E	F	I	*F	G	B	G	H	B	H	I	C	*I	A	E			
δ	0	1																																	
→A	B	E																																	
B	C	F																																	
*C	D	H																																	
D	E	H																																	
E	F	I																																	
*F	G	B																																	
G	H	B																																	
H	I	C																																	
*I	A	E																																	
	b)	i. State and prove Pumping Lemma for regular languages. ii. Show that $L = \{a^n b^n \mid n \geq 0\}$ is not regular.	<i>CO2</i>	<i>PO2</i>	10																														
		OR																																	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

3	a)	<p>Solve to obtain a Regular Expression from the given Finite State Machine using Kleene's theorem.</p>	CO1	PO1	10
	b)	<p>Obtain Regular Expressions for the following languages:</p> <ol style="list-style-type: none"> $L = \{a^n b^m \mid m \geq 1, n \geq 1, nm \geq 3\}$ $L = \{vuv \mid u, v \in \{a, b\}^* \text{ and } v =2\}$ $L = \{w : n_a(w) \bmod 3 = 0 \text{ where } w \in (a, b)^*\}$ 	CO2	PO2	10
UNIT - III					
4	a)	<p>Solve to obtain grammar to generate the language</p> $L = \{a^n b^m \mid n \geq 0, m > n\}$	CO3	PO3	5
	b)	<p>Is the following grammar ambiguous?</p> <p>$S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$</p> <p>Consider the string "aaabbabbba"</p>	CO2	PO2	7
	c)	<p>Convert Context-Free Grammar to Chomsky Normal Form</p> <p>$S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$</p>	CO1	PO1	8
OR					
5	a)	<p>Obtain a grammar to generate the language</p> $L = \{0^m 1^m 2^n \mid m \geq 1, n \geq 0\}$	CO3	PO3	5
	b)	<p>In programming constructs, an identifier can be a variable name or a function name etc. An identifier is defined as that which starts with a letter and that letter can be followed by any combinations of letters or digits.</p> <p>Design a Context Free Grammar to accept an identifier.</p>	CO2	PO2	5

	c)	Convert Context Free Grammar to Greibach Normal Form. $S \rightarrow ASA aB$ $A \rightarrow B S a$ $B \rightarrow b \epsilon$	CO1	PO1	10
		UNIT - IV			
6	a)	i. Design a PDA for $L = \{a^n, b^{2n} n \geq 1\}$ ii. Write the instantaneous description for the string “aabbabb” iii. Is the PDA of (i) deterministic?	CO3	PO3	10
	b)	For the given grammar obtain PDA <ul style="list-style-type: none">• $S \rightarrow aABB aAA$• $A \rightarrow aBB a$• $B \rightarrow bBB aBB a$• $C \rightarrow a$	CO2	PO2	10
		UNIT - V			
7	a)	Obtain a TM to accept a string w of a 's and b 's such that $N_a(w)$ is equal to $N_b(w)$.	CO3	PO3	12
	b)	Demonstrate how multi-tape and single-tape multi-track Turing Machines are identical.	CO2	PO2	4
	c)	Determine whether a Post Correspondence Solution exists for the following data. $A_1=1, A_2=10111, A_3=10$ $B_1=111, B_2=10, B_3=0$	CO1	PO1	4

B.M.S.C.E. - EVEN SEM 2023-24