

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Computer Science and Business Systems

Duration: 3 hrs.

Course Code: 23BS3PCOPS

Max Marks: 100

Course: OPERATING SYSTEMS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat block diagram explain dual operation in operating system.	<i>CO1</i>	<i>PO1</i>	7
	b)	List and explain the services provided by OS for the user and efficient operation of system.	<i>CO1</i>	<i>PO1</i>	7
	c)	Briefly explain types of system call.	<i>CO1</i>	<i>PO1</i>	6
OR					
2	a)	Compare and contrast different types of computer system architectures. Provide examples of each type.	<i>CO1</i>	<i>PO2</i>	10
	b)	Explain the concept of computing environments. Discuss different types of computing environments and their impact on operating system design.	<i>CO1</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Illustrate with a neat sketch the process state and process control block.	<i>CO1</i>	<i>PO1</i>	10
	b)	Compare between Process and Thread. List the benefits of Multithreaded Programming.	<i>CO1</i>	<i>PO2</i>	10
OR					
4	a)	Discuss the basic concepts of CPU scheduling. What are the key criteria used to evaluate scheduling algorithms?	<i>CO2</i>	<i>PO2</i>	10
	b)	Compare between shared memory and message passing in inter process communication. Explain the Producer-Consumer problem using shared memory.	<i>CO2</i>	<i>PO2</i>	10
UNIT - III					
5	a)	Explain the critical section problem in process synchronization. How does Peterson's solution address this problem?	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Consider the following snapshot of system</p> <table border="1"> <thead> <tr> <th colspan="12">Given Matrices</th> </tr> <tr> <th></th><th colspan="4">Allocation</th><th colspan="4">Maximum Resources</th><th colspan="4">Available Resources</th></tr> <tr> <th></th><th>A</th><th>B</th><th>C</th><th>D</th><th>A</th><th>B</th><th>C</th><th>D</th><th>A</th><th>B</th><th>C</th><th>D</th></tr> </thead> <tbody> <tr> <td>P0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>2</td><td>1</td><td>0</td><td>1</td><td>5</td><td>2</td><td>0</td></tr> <tr> <td>P1</td><td>1</td><td>2</td><td>3</td><td>1</td><td>1</td><td>6</td><td>5</td><td>2</td><td></td><td></td><td></td><td></td></tr> <tr> <td>P2</td><td>1</td><td>3</td><td>6</td><td>5</td><td>2</td><td>3</td><td>6</td><td>6</td><td></td><td></td><td></td><td></td></tr> <tr> <td>P3</td><td>0</td><td>6</td><td>3</td><td>2</td><td>0</td><td>6</td><td>5</td><td>2</td><td></td><td></td><td></td><td></td></tr> <tr> <td>P4</td><td>0</td><td>0</td><td>1</td><td>4</td><td>0</td><td>6</td><td>5</td><td>6</td><td></td><td></td><td></td><td></td></tr> </tbody> </table> <p>Find the need matrix and calculate safe sequence using bankers algorithm –mention the above is safe or not safe</p>	Given Matrices													Allocation				Maximum Resources				Available Resources					A	B	C	D	A	B	C	D	A	B	C	D	P0	0	1	1	0	0	2	1	0	1	5	2	0	P1	1	2	3	1	1	6	5	2					P2	1	3	6	5	2	3	6	6					P3	0	6	3	2	0	6	5	2					P4	0	0	1	4	0	6	5	6					CO2	PO3	10
Given Matrices																																																																																																												
	Allocation				Maximum Resources				Available Resources																																																																																																			
	A	B	C	D	A	B	C	D	A	B	C	D																																																																																																
P0	0	1	1	0	0	2	1	0	1	5	2	0																																																																																																
P1	1	2	3	1	1	6	5	2																																																																																																				
P2	1	3	6	5	2	3	6	6																																																																																																				
P3	0	6	3	2	0	6	5	2																																																																																																				
P4	0	0	1	4	0	6	5	6																																																																																																				
		OR																																																																																																										
6	a)	Describe the techniques used for deadlock prevention. How do these techniques ensure that deadlocks do not occur?	CO2	PO2	10																																																																																																							
	b)	What is Semaphore? State a dining philosopher problem give a solution using semaphore.	CO2	PO2	10																																																																																																							
		UNIT - IV																																																																																																										
7	a)	What is Demand paging? Discuss with a neat diagram steps to handle page fault.	CO2	PO2	10																																																																																																							
	b)	Describe how copy-on-write used to optimize memory utilization. Consider the reference stream 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. Find number of page faults using FCFS (Frames =3)	CO2	PO3	10																																																																																																							
		OR																																																																																																										
8	a)	Consider the page reference string 6, 1, 1, 2, 0, 3, 4, 6, 0, 2, 1, 2, 1, 2, 0, 3, 2, 1, 2, 0 for a memory with three frames and calculate number of page faults by using FIFO (First In First Out) and LRU Page replacement algorithms. Which algorithm is most efficient	CO3	PO3	12																																																																																																							
	b)	Outline segmentation. Explain the basic method of segmentation with an example. Mention its advantages and disadvantages.	CO3	PO2	8																																																																																																							
		UNIT - V																																																																																																										
9	a)	Explain various disk scheduling algorithm in detail.	CO3	PO2	10																																																																																																							
	b)	Discuss rotational optimization techniques and their impact on disk performance.	CO2	PO2	10																																																																																																							
		OR																																																																																																										
10	a)	Describe free space management strategies in file systems. Which method is most efficient and why?	CO2	PO2	10																																																																																																							
	b)	Explain file access control mechanisms. Discuss its advantages and disadvantages.	CO2	PO2	10																																																																																																							