

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

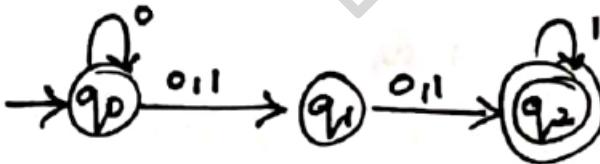
Programme: B.E.

Semester: IV

Branch: Computer Science & Business Systems

Duration: 3 hrs.

Course Code: 23BS4PCFLA

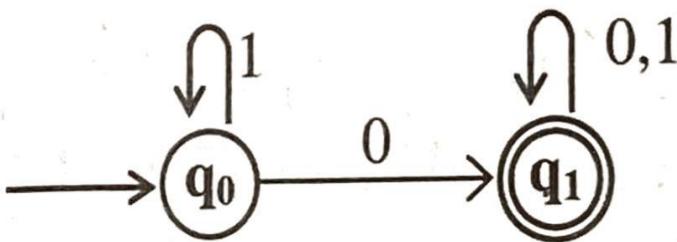

Max Marks: 100

Course: Formal Language and Automata Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Enumerate on i) Strings ii) Language iii) Alphabet iv) Power of an alphabet.	<i>CO1</i>	<i>PO1</i>	4
	b)	Construct a DFA which accepts strings of 0's and 1's where the value of each string is represented as a binary number. Only the strings representing zero modulo five should be accepted.	<i>CO3</i>	<i>PO3</i>	8
	c)	Convert the following NFA to equivalent DFA.	<i>CO2</i>	<i>PO2</i>	8
OR					
2	a)	Distinguish between DFA, NFA and ϵ -NFA.	<i>CO1</i>	<i>PO1</i>	4
	b)	A toll plaza on a highway has an automated system that only allows vehicles with valid electronic toll tags to pass. Vehicles without a valid tag must be redirected to a manual payment lane. Design a Deterministic Finite Automaton (DFA) that models this system.	<i>CO3</i>	<i>PO3</i>	6
	c)	Design NFA for accepting binary strings that has a '1' in second last position. Convert the same to DFA by subset construction method.	<i>CO3</i>	<i>PO3</i>	10
UNIT - II					
3	a)	Minimize the following DFA.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.



δ	0	1
→A	B	E
B	C	F
*C	D	H
D	E	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	E

b) i. State and prove Pumping Lemma for regular languages.
ii. 2. Show that $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

OR

4 a) Solve to obtain a Regular Expression from the given Finite State Machine.

b) Obtain Regular Expressions for the following languages:

- $L = \{a^n b^m \mid m \geq 1, n \geq 1, nm \geq 3\}$
- $L = \{vuv \mid u, v \in \{a, b\}^* \text{ and } |v|=2\}$

UNIT - III

5 a) Solve to obtain grammar to generate the language
 $L = \{a^n b^m \mid n \geq 0, m > n\}$

b) Is the following grammar ambiguous?

$S \rightarrow aB \mid bA$
 $A \rightarrow aS \mid bAA \mid a$
 $B \rightarrow bS \mid aBB \mid b$

Consider the string "aaabbabbba"

c) Convert Context-Free Grammar to Chomsky Normal Form
 $S \rightarrow 0A \mid 1B$
 $A \rightarrow 0AA \mid 1S \mid 1$
 $B \rightarrow 1BB \mid 0S \mid 0$

OR					
6	a)	Obtain a grammar to generate the language $L=\{0^m1^m2^n \mid m \geq 1, n \geq 0\}$	<i>CO3</i>	<i>PO3</i>	5
	b)	In programming constructs, an identifier can be a variable name or a function name etc. An identifier is defined as that which starts with a letter and that letter can be followed by any combinations of letters or digits. Design a Context Free Grammar to accept an identifier.	<i>CO2</i>	<i>PO2</i>	5
	c)	Convert Context Free Grammar to Greibach Normal Form. $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S \mid a$ $B \rightarrow b \mid \epsilon$	<i>CO1</i>	<i>PO1</i>	10
UNIT - IV					
7	a)	i. Design a PDA for $L=\{a^n, b^{2n} \mid n \geq 1\}$ ii. Write the instantaneous description for the string “aabbbb” iii. Is the PDA of (i) deterministic?	<i>CO3</i>	<i>PO3</i>	10
	b)	For the given grammar obtain PDA <ul style="list-style-type: none"> • $S \rightarrow aABB \mid aAA$ • $A \rightarrow aBB \mid a$ • $B \rightarrow bBB \mid aBB \mid a$ • $C \rightarrow a$ 	<i>CO2</i>	<i>PO2</i>	10
	OR				
8	a)	Obtain a PDA to accept the language $L(M)=\{wCw^R \mid w \in (a+b)^*\}$ where w^R is reverse of w .	<i>CO3</i>	<i>PO3</i>	10
	b)	Obtain a CFG from given PDA. <ul style="list-style-type: none"> • $\delta(q_0, a, Z) = (q_0, AZ)$ • $\delta(q_0, b, A) = (q_0, AA)$ • $\delta(q_0, a, A) = (q_1, \epsilon)$ 	<i>CO3</i>	<i>PO3</i>	10
	UNIT - V				
9	a)	Obtain a TM to accept a string w of a's and b's such that $N_a(w)$ is equal to $N_b(w)$.	<i>CO3</i>	<i>PO3</i>	12
	b)	Demonstrate how multi-tape and single-tape multi-track Turing Machines are identical.	<i>CO2</i>	<i>PO2</i>	4
	c)	Determine whether a Post Correspondence Solution exists for the following data. $A_1=1, A_2=10111, A_3=10$ $B_1=111, B_2=10, B_3=0$	<i>CO2</i>	<i>PO2</i>	4
	OR				

	10	a)	Obtain a TM to accept the language $L=\{0^n1^n2^n \mid n \geq 1\}$	CO3	PO3	12
		b)	Describe components of Turing Machine.	CO3	PO3	4
		c)	Determine whether a Post Correspondence Solution exists for the following data. <ul style="list-style-type: none"> • $A_1=10, A_2=011, A_3=101$ • $B_1=101, B_2=11, B_3=011$ 	CO2	PO2	4

B.M.S.C.E. - EVEN SEM 2024-25